Plankton blooms in vortices: The role of biological and hydrodynamic time scales

We study the interplay of hydrodynamic mesoscale structures and the growth of plankton in the wake of an island, and its interaction with a coastal upwelling. Our focus is on a mechanism for the emergence of localized plankton blooms in vortices. Using a coupled system of a kinematic flow mimicking the mesoscale structures behind the island and a simple three component model for the marine ecosystem, we show that the long residence times of nutrients and plankton in the vicinity of the island and the confinement of plankton within vortices are key factors for the appearance of localized plankton blooms

[1]  Eric D. Barton,et al.  The influence of island-generated eddies on chlorophyll distribution : a study of mesoscale variation around Gran Canaria , 1997 .

[2]  E. Ziemniak,et al.  Application of scattering chaos to particle transport in a hydrodynamical flow. , 1993, Chaos.

[3]  U. Feudel,et al.  Biological activity in the wake of an island close to a coastal upwelling , 2008, 0802.3532.

[4]  Zoltan Neufeld,et al.  Chaotic advection of reacting substances: Plankton dynamics on a meandering jet , 1999, chao-dyn/9906029.

[5]  Akira Okubo,et al.  Oceanic diffusion diagrams , 1971 .

[6]  P. Harrison Dynamics of Marine Ecosystems: BiologicalPhysical Interactions in the Oceans , 1992 .

[7]  E. Hernández‐García,et al.  Sustained plankton blooms under open chaotic flows , 2003, nlin/0311054.

[8]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 1. Sensitivity to advection numerics and mixed layer physics , 1999 .

[9]  F. d’Ovidio,et al.  Mixing structures in the Mediterranean Sea from finite‐size Lyapunov exponents , 2004, nlin/0404041.

[10]  Bernd Blasius,et al.  A Model of Phytoplankton Blooms , 2002, The American Naturalist.

[11]  Angelo Vulpiani,et al.  Population dynamics advected by chaotic flows: A discrete-time map approach. , 2001, Chaos.

[12]  Andrew M. Edwards,et al.  Oscillatory behaviour in a three-component plankton population model , 1996 .

[13]  A. Vulpiani,et al.  Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient , 1997, chao-dyn/9701013.

[14]  A. Provenzale,et al.  Mesoscale vortices and the paradox of the plankton , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  B. Hatcher,et al.  Dynamics of marine ecosystems Biological-physical interactions in the oceans , 2006 .

[16]  E. Hernández‐García,et al.  Spatial patterns in chemically and biologically reacting flows , 2002, nlin/0205009.

[17]  Eric D. Barton,et al.  Variability in plankton community structure, metabolism, and vertical carbon fluxes along an upwelling filament (Cape Juby, NW Africa) , 2004 .

[18]  John H. Steele,et al.  A Simple Plankton Model , 1981, The American Naturalist.

[19]  Stephen Wiggins,et al.  Lagrangian transport and chaos in the near wake of the flow around an obstacle: a numerical implementation of lobe dynamics , 1997 .

[20]  Antonello Provenzale,et al.  Coherent vortices, Lagrangian particles and the marine ecosystem , 2004 .

[21]  Z Toroczkai,et al.  Chaotic flow: the physics of species coexistence. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Moro Small-scale structure of nonlinearly interacting species advected by chaotic flows , 2009 .

[23]  E. Hernández‐García,et al.  Small-scale structure of nonlinearly interacting species advected by chaotic flows. , 2001, Chaos.

[24]  B. Legras,et al.  Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex , 2002 .

[25]  Adrian P. Martin Phytoplankton patchiness: the role of lateral stirring and mixing , 2003 .

[26]  J. G. Baretta-Bekker,et al.  Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake , 1997 .

[27]  Francesc Peters,et al.  Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations , 2000 .

[28]  Ulrike Feudel,et al.  Kinematic studies of transport across an island wake, with application to the Canary islands , 2006, nlin/0605051.

[29]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data , 2000 .

[30]  J. Steele,et al.  The role of predation in plankton models , 1992 .

[31]  A. Provenzale,et al.  Impact of the spatiotemporal variability of the nutrient flux on primary productivity in the ocean , 2005 .

[32]  Ann E. Gargett,et al.  Biological-Physical Interactions in the Upper Ocean: The Role of Vertical and Small Scale Transport Processes , 1995 .

[33]  Andrew M. Edwards,et al.  Generic dynamics of a simple plankton population model with a non-integer exponent of closure , 2001 .

[34]  Edward R. Abraham,et al.  The generation of plankton patchiness by turbulent stirring , 1998, Nature.

[35]  Annalisa Bracco,et al.  Patchy productivity in the open ocean , 2002 .

[36]  Celso Grebogi,et al.  Chemical and biological activity in open flows: A dynamical system approach , 2005 .