Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics

Aurivillius oxides family has attracted great interest in the last years due to their promising electrical properties as high temperature piezoelectric materials. Piezoelectric materials that could operate in extreme conditions of use (elevated temperatures and hostile environments) could be of particular interest for different technological applications. Furthermore, increasing concerns for environmental issues have promoted the study of new lead-free piezoelectric materials. This article examines how the development of these materials has taken place from their discovery at the end of the 40's and the existing knowledge about their processing and properties.

[1]  M. Villegas,et al.  Microwave‐Assisted Reaction Sintering of Bismuth Titanate‐Based Ceramics , 2006 .

[2]  M. Villegas,et al.  Equilibrium phases in the Bi2O3–TiO2–WO3 system , 2006 .

[3]  M. Villegas,et al.  Domain structure of Bi4Ti3O12 ceramics revealed by chemical etching , 2006 .

[4]  J. Tartaj,et al.  Low‐Temperature Synthesis of Bismuth Titanate Niobate (Bi7Ti4NbO21) Nanoparticles from a Metal‐organic Polymeric Precursor , 2004 .

[5]  Y. Noguchi,et al.  Estimation of ionic and hole conductivity in bismuth titanate polycrystals at high temperatures , 2004 .

[6]  Z. S. Macedo,et al.  Impedance spectroscopy of Bi4Ti3O12 ceramic produced by self-propagating high-temperature synthesis technique , 2004 .

[7]  A. Hardy,et al.  A statistical approach to the identification of determinant factors in the preparation of phase pure (Bi,La)4Ti3O12 from an aqueous citrate gel , 2004 .

[8]  K. J. Rao,et al.  Microwave Synthesis and Sintering of Bi4Ti3O12, the Aurivillius Compound: Structural and Chemical Effects of Attempted Lithiation , 2004 .

[9]  M. Villegas,et al.  Sintering and electrical properties of Bi4Ti2.95WxO11.9+3x piezoelectric ceramics , 2004 .

[10]  M. Rahaman,et al.  Compositional effects on densification and microstructural evolution of bismuth titanate , 2004 .

[11]  K. M. Nair,et al.  Morphotropic Phase Boundary Perovskites, High Strain Piezoelectrics, and Dielectric Ceramics | NIST , 2003 .

[12]  H. Ishiwara,et al.  Polarization enhancement and coercive field reduction in W- and Mo-doped Bi3.35La0.75Ti3O12 thin films , 2003 .

[13]  Yongxiang Li,et al.  Low-temperature sintering of Bi4Ti3O12 derived from a co-precipitation method , 2002 .

[14]  M. Miyayama,et al.  Dielectric and ferroelectric properties of SrBi4Ti4O15 single crystals , 2001 .

[15]  J. Lisoni,et al.  Synthesis of Ferroelectric Bi4Ti3O12 by Alternative Routes: Wet No-Coprecipitation Chemistry and Mechanochemical Activation , 2001 .

[16]  A. Umabala,et al.  Bismuth titanate from coprecipitated stoichiometric hydroxide precursors , 2000 .

[17]  K. Nakamura,et al.  Orientation dependence of electromechanical coupling factors in KNbO/sub 3/ , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[19]  J. Eiras,et al.  Synthesis and Structural, Ferroelectric, and Piezoelectric Properties of SrBi4Ti4O15 Ceramics , 1999 .

[20]  M. Villegas,et al.  Factors Affecting the Electrical Conductivity of Donor‐Doped Bi4Ti3O12 Piezoelectric Ceramics , 1999 .

[21]  M. Villegas,et al.  Low-temperature sintering and electrical properties of chemically w-doped Bi4Ti3O12 ceramics , 1999 .

[22]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[23]  S. Trolier-McKinstry,et al.  Templated Grain Growth of Textured Bismuth Titanate , 1999 .

[24]  Guannan Li,et al.  Dielectric study in nanocrystalline Bi4Ti3O12 prepared by chemical coprecipitation , 1998 .

[25]  N. Setter,et al.  Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth Titanate , 1996, Journal of the American Ceramic Society.

[26]  S. Komarneni,et al.  Bismuth titanate from nanocomposite and sol-gel processes , 1996 .

[27]  Carlos Segovia Fernández,et al.  Preparation and sintering behaviour of submicronic Bi4Ti3O12 powders , 1996, Journal of Materials Science.

[28]  D. Vanderbilt,et al.  Competing structural instabilities in cubic perovskites. , 1994, Physical review letters.

[29]  J. R. Jurado,et al.  Improvement of sintering and piezoelectric properties of soft lead zirconate titanate ceramics , 1994 .

[30]  Wu Qunli,et al.  Reconstruction of blockage in a duct from single spectrum , 1994 .

[31]  R. Withers,et al.  The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6 , 1991 .

[32]  Č. Jovalekić,et al.  Sintering and characterization of Bi4Ti3O12 ceramics , 1991, Journal of Materials Science.

[33]  R. Withers,et al.  Structure refinement of commensurately modulated bismuth titanate, Bi4Ti3O12 , 1990 .

[34]  Relva C. Buchanan,et al.  Ceramic materials for electronics: Processing, properties, and applications , 1986 .

[35]  Toshio Kimura,et al.  Preparation of Bi4Ti3O12 powders in the presence of molten salt containing LiCl , 1983 .

[36]  R. Newnham,et al.  Structural basis of ferroelectricity in the bismuth titanate family , 1971 .

[37]  L. E. Cross,et al.  Electrical and Optical Properties of Ferroelectric Bi4Ti3O12 Single Crystals , 1968 .