Nonlinear system identification under various prior knowledge

Abstract In the note the class of block-oriented dynamic nonlinear systems is considered, in particular, Hammerstein and Wiener systems are investigated. Several algorithms for nonlinear system identification are presented. The algorithms exploit various degrees of prior knowledge - from parametric - to nonparametric. Eventually, a semiparametric algorithm, which shares advantages of both approaches is announced.

[1]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[2]  Grzegorz Mzyk,et al.  A Censored Sample Mean Approach to Nonparametric Identification of Nonlinearities in Wiener Systems , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Grzegorz Mzyk,et al.  Generalized Kernel Regression Estimate for the Identification of Hammerstein Systems , 2007, Int. J. Appl. Math. Comput. Sci..

[4]  Zygmunt Hasiewicz,et al.  On Nonparametric Identification of Wiener Systems , 2007, IEEE Transactions on Signal Processing.

[5]  Robert E. Kearney,et al.  A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR , 2005, IEEE Transactions on Biomedical Engineering.

[6]  Przemyslaw Sliwinski,et al.  Nonparametric identification of nonlinearities in block-oriented systems by orthogonal wavelets with compact support , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Zygmunt Hasiewicz,et al.  Combined parametric-nonparametric identification of Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[8]  David T. Westwick,et al.  Identification of Hammerstein models with cubic spline nonlinearities , 2004, IEEE Transactions on Biomedical Engineering.

[9]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[10]  Er-Wei Bai,et al.  Frequency domain identification of Hammerstein models , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[11]  D. Bernstein,et al.  Identification of FIR Wiener systems with unknown, noninvertible, polynomial nonlinearities , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[12]  E. Capobianco Hammerstein system represention of financial volatility processes , 2002 .

[13]  G. Wanner,et al.  200 years of least squares method , 2002 .

[14]  D. Westwick,et al.  Separable Least Squares Identification of Nonlinear Hammerstein Models: Application to Stretch Reflex Dynamics , 2001, Annals of Biomedical Engineering.

[15]  Georgios B. Giannakis,et al.  A bibliography on nonlinear system identification , 2001, Signal Process..

[16]  M. Chidambaram,et al.  Identification of Hammerstein model for bioreactors with input multiplicities , 2000 .

[17]  Wlodzimierz Greblicki,et al.  Continuous-time Hammerstein system identification , 2000, IEEE Trans. Autom. Control..

[18]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[19]  R. Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[20]  W. Greblicki,et al.  Continuous-time Wiener system identification , 1998, IEEE Trans. Autom. Control..

[21]  Zygmunt Hasiewicz,et al.  Nonlinear system identification by the Haar multiresolution analysis , 1998 .

[22]  K. Hunt,et al.  Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle , 1998, IEEE Transactions on Biomedical Engineering.

[23]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[24]  J. Schoukens,et al.  Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach , 1998, IEEE Trans. Autom. Control..

[25]  Wlodzimierz Greblicki,et al.  Nonparametric approach to Wiener system identification , 1997 .

[26]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[27]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[28]  Shir-Kuan Lin,et al.  Identification of a class of nonlinear deterministic systems with application to manipulators , 1994, IEEE Trans. Autom. Control..

[29]  D. Panescu,et al.  A nonlinear electrical-thermal model of the skin , 1994, IEEE Transactions on Biomedical Engineering.

[30]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[31]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[32]  W. Greblicki,et al.  Nonparametric identification of a particular nonlinear time series system , 1990, 29th IEEE Conference on Decision and Control.

[33]  W. Greblicki Non-parametric orthogonal series identification of Hammerstein systems , 1989 .

[34]  Miroslaw Pawlak,et al.  Nonparametric identification of Hammerstein systems , 1989, IEEE Trans. Inf. Theory.

[35]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[36]  T. Söderström,et al.  Instrumental-variable methods for identification of Hammerstein systems , 1982 .

[37]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[38]  S. Billings,et al.  Identification of nonlinear systems using the Wiener model , 1977 .

[39]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[40]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[41]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[42]  Przemyslaw Sliwinski,et al.  Computational Algorithms for Wavelet Identification of Nonlinearities in Hammerstein Systems With Random Inputs , 2008, IEEE Transactions on Signal Processing.

[43]  Przemyslaw Sliwinski,et al.  Computational algorithms for multiscale identification of nonlinearities in Hammerstein systems with random inputs , 2005, IEEE Transactions on Signal Processing.

[44]  Robert E. Kearney,et al.  Identification of Time-Varying Hammerstein Systems from Ensemble Data , 2004, Annals of Biomedical Engineering.

[45]  O. Nelles Nonlinear System Identification , 2001 .

[46]  Zhu Xue-feng,et al.  Nonlinear Predictive Control Based on Hammerstein Models , 1994 .

[47]  Zi-Qiang Lang,et al.  Controller design oriented model identification method for Hammerstein system, , 1993, Autom..

[48]  P. Stoica,et al.  System identification , 1988 .

[49]  Z. Hasiewicz Identification of a linear system observed through zero-memory non-linearity , 1987 .

[50]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[51]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[52]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .