The Su-Schrieffer-Heeger (SSH) Model

We take a hands-on approach and get to know the basic concepts of topological insulators via a concrete system: the Su-Schrieffer-Heeger (SSH) model of polyacetylene. This model describes spinless fermions hopping on a one-dimensional lattice with staggered hopping amplitudes. Using the SSH model, we introduce the concepts of the single-particle Hamiltonian, the difference between bulk and boundary, chiral symmetry, adiabatic equivalence, topological invariants, and bulk–boundary correspondence.

[1]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[2]  Quantum Mechanical Position Operator and Localization in Extended Systems , 1998, cond-mat/9810348.

[3]  D. Thouless,et al.  Quantization of particle transport , 1983 .

[4]  B. Holstein The adiabatic theorem and Berry’s phase , 1989 .

[5]  C. Kane,et al.  Time Reversal Polarization and a Z 2 Adiabatic Spin Pump , 2006, cond-mat/0606336.

[6]  L. Du,et al.  Robust helical edge transport in gated InAs/GaSb bilayers. , 2015, Physical review letters.

[7]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[8]  A. Akhmerov,et al.  Scattering theory of topological insulators and superconductors , 2011, 1106.6351.

[9]  J. C. Budich,et al.  From the adiabatic theorem of quantum mechanics to topological states of matter , 2012, 1210.6672.

[10]  Xiao-Liang Qi,et al.  Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors , 2005, cond-mat/0505308.

[11]  T. Fukui,et al.  Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances , 2005, cond-mat/0503172.

[12]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[14]  Macroscopic polarization from electronic wave functions , 1999, cond-mat/9903216.

[15]  Zak,et al.  Berry's phase for energy bands in solids. , 1989, Physical review letters.

[16]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[17]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[18]  D. Vanderbilt,et al.  Smooth gauge for topological insulators , 2012, 1201.5356.

[19]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[20]  Yoichi Ando,et al.  Topological Insulator Materials , 2013, 1304.5693.

[21]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[22]  Chaoxing Liu,et al.  Quantum spin Hall effect in inverted type-II semiconductors. , 2008, Physical review letters.

[23]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[24]  A. Garg Berry phases near degeneracies: Beyond the simplest case , 2010 .

[25]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[26]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[27]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[28]  Measuring Z 2 topological invariants in optical lattices using interferometry , 2014, 1402.2434.

[29]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[30]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[31]  X. Qi,et al.  Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection , 2011, 1101.2011.

[32]  L. Molenkamp,et al.  The Quantum Spin Hall Effect: Theory and Experiment , 2008, 0801.0901.