Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals

Quantum simulation with cold atoms in optical lattices is an attractive avenue for explorations of quantum many-body physics. A principal challenge in the field is to increase the energy and length scales in current set-ups, thereby reducing temperature and coherence-time requirements. Here, we present a new paradigm for high-density, two-dimensional optical lattices in photonic crystal waveguides. Specially engineered two-dimensional photonic crystals provide a practical platform to trap atoms and engineer their interactions in ways that surpass the limitations of current technologies and enable investigations of novel quantum many-body matter. Our schemes remove the constraint on the lattice constant set by the free-space optical wavelength in favour of deeply sub-wavelength atomic arrays. We further describe possibilities for atom–atom interactions mediated by photons in two-dimensional photonic crystal waveguides with energy scales several orders of magnitude larger than for exchange interactions in free-space lattices and with the capability to engineer strongly long-range interactions.

[1]  H. Kimble,et al.  Trapped atoms in one-dimensional photonic crystals , 2013, CLEO: 2013.

[2]  P. Barclay,et al.  Cavity optomechanics in gallium phosphide microdisks , 2013, 1309.6300.

[3]  P. J. Dean,et al.  Low-Level Interband Absorption in Phosphorus-Rich Gallium Arsenide-Phosphide , 1969 .

[4]  P. Barclay,et al.  Hybrid Nanocavity Resonant Enhancement of Color Center Emission in Diamond , 2011, 1105.5137.

[5]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[6]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[7]  M. Lewenstein,et al.  Quantum spin models with long-range interactions and tunnelings: a quantum Monte Carlo study , 2012, 1206.1752.

[8]  Casimir-Polder interaction between an atom and a dielectric grating , 2009 .

[9]  Fariba Hatami,et al.  Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities , 2009 .

[10]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[11]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[12]  Shanhui Fan,et al.  Coherent single photon transport in one-dimensional waveguide coupledwith superconducting quantum bits , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[13]  S. John,et al.  Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. , 1990, Physical review letters.

[14]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[15]  T. Asano,et al.  Photonic crystal nanocavity with a Q-factor of ~9 million. , 2014, Optics express.

[16]  J I Cirac,et al.  Nanoplasmonic lattices for ultracold atoms. , 2012, Physical review letters.

[17]  S. Dawkins,et al.  Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. , 2009, Physical review letters.

[18]  Chang-lei Wang,et al.  Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm , 2010 .

[19]  J. Cirac,et al.  Superconducting vortex lattices for ultracold atoms. , 2013, Physical review letters.

[20]  J. Feist,et al.  Coupling a Single Trapped Atom to a Nanoscale Optical Cavity , 2013, Science.

[21]  P. Zoller,et al.  Topology by dissipation , 2013, 1302.5135.

[22]  D. Porras,et al.  Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics. , 2012, Physical review letters.

[23]  M. Greiner Ultracold quantum gases in three-dimensional optical lattice potentials , 2003 .

[24]  I Bloch,et al.  Time-Resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices , 2007, Science.

[25]  P. Zoller,et al.  Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. , 2006, Physical review letters.

[26]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[27]  H. Kimble,et al.  Atom–light interactions in photonic crystals , 2013, Nature Communications.

[28]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[29]  Susumu Noda,et al.  Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million. , 2011, Optics express.

[30]  Quang,et al.  Spontaneous emission near the edge of a photonic band gap. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  M. Lewenstein,et al.  Ultracold dipolar gas in an optical lattice: The fate of metastable states , 2008, 0806.2950.

[33]  Oskar Painter,et al.  Momentum space design of high-Q photonic crystal optical cavities. , 2002, Optics express.

[34]  R. Zietal,et al.  Casimir-Polder interaction between a polarizable particle and a plate with a hole , 2011, 1103.2381.

[35]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[36]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[37]  Zach DeVito,et al.  Opt , 2017 .

[38]  D. E. Chang,et al.  Quantum many-body models with cold atoms coupled to photonic crystals , 2013, Nature Photonics.

[39]  Yoon-Soo Park,et al.  Photonic crystal band edge laser array with a holographically generated square-lattice pattern , 2005 .

[40]  Oskar Painter,et al.  Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions , 2014 .

[41]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[42]  Steven G. Johnson,et al.  Casimir forces in the time domain: Theory , 2009, 0904.0267.

[43]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[44]  P. Hauke,et al.  Spread of correlations in long-range interacting quantum systems. , 2013, Physical review letters.

[45]  Shamik Gupta,et al.  Thermodynamics and dynamics of systems with long-range interactions , 2010, 1001.1479.

[46]  Quang,et al.  Localization of Superradiance near a Photonic Band Gap. , 1995, Physical review letters.

[47]  S. Buhmann,et al.  Dispersion forces in macroscopic quantum electrodynamics , 2006, quant-ph/0608118.

[48]  Zixu Zhang ULTRACOLD QUANTUM GASES , 2012 .

[49]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[50]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[51]  J. Cirac,et al.  Self-organization of atoms along a nanophotonic waveguide. , 2012, Physical review letters.

[52]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[53]  M. Lewenstein,et al.  Complete devil's staircase and crystal–superfluid transitions in a dipolar XXZ spin chain: a trapped ion quantum simulation , 2010, 1008.2945.

[54]  Gershon Kurizki,et al.  Nonradiative interaction and entanglement between distant atoms , 2012, 1205.3064.

[55]  Fundamental quantum optics in structured reservoirs , 2000 .

[56]  H. Kimble,et al.  Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.

[57]  Vassilios Yannopapas Optical forces near a plasmonic nanostructure , 2008 .

[58]  Kurizki Two-atom resonant radiative coupling in photonic band structures. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[59]  Soon-Hong Kwon,et al.  Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs , 2003 .

[60]  李幼升,et al.  Ph , 1989 .

[61]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[62]  Jaeyoon Cho,et al.  Fractional quantum Hall state in coupled cavities. , 2008, Physical review letters.