Seasonal variation in remotely-sensed phytoplankton size structure around southern Africa

Abstract The three-component model of Brewin et al. (2010) computes fractional contributions of three phytoplankton size classes (micro- (> 20 μm), nano- (2–20 μm), picophytoplankton (  1 mg m− 3 was limited to shelf regions along the coasts of Southern Africa and Madagascar, while values  50% of the total Chla in these regions with little change throughout the year. The AR shelf differed, with picophytoplankton dominating in summer, and micro- and nanophytoplankton the rest of the year. In the open ocean domains of the NB, SB, and AB regions, nanophytoplankton dominated for most of the year, with picophytoplankton being more prevalent during summer and autumn. In contrast, in the AR open ocean, nanophytoplankton were dominant only during winter and early spring, whereas picophytoplankton dominated throughout the year in the MC open ocean. The refined model characterised previously unknown spatial and temporal changes in size structure in various ecosystems around Southern Africa.

[1]  P. Monteiro,et al.  The seasonal cycle of mixed layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: A high-resolution glider experiment , 2015 .

[2]  Y. Shin,et al.  Spatial characterisation of the Benguela ecosystem for ecosystem-based management , 2016 .

[3]  L. Hutchings,et al.  Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem , 2007 .

[4]  C. Reason,et al.  A connection between the South Equatorial Current north of Madagascar and Mozambique Channel Eddies , 2010 .

[5]  C. Whittle,et al.  Seasonal variation in phytoplankton in the southern Benguela: pigment indices and ocean colour , 2005 .

[6]  J. Lutjeharms,et al.  The hydrography and water masses of the Natal Bight, South Africa , 2000 .

[7]  W. D. Ruijter,et al.  Moored current observations in the Mozambique Channel , 2003 .

[8]  M. van den Berg,et al.  Chemotaxonomic investigation of phytoplankton in the shelf ecosystem of the KwaZulu-Natal Bight, South Africa § , 2015 .

[9]  C. D. B. Montégut,et al.  Basin-wide seasonal evolution of the Indian Ocean's phytoplankton blooms , 2007 .

[10]  T. Probyn The inorganic nitrogen nutrition of phytoplankton in the southern Benguela: new production, phytoplankton size and implications for pelagic foodwebs , 1992 .

[11]  W. Gregg,et al.  Global and regional evaluation of the SeaWiFS chlorophyll data set , 2004 .

[12]  F. Marsac,et al.  Patterns of variability of sea surface chlorophyll in the Mozambique Channel: A quantitative approach , 2009 .

[13]  C. Whittle,et al.  Shelf currents, lee-trapped and transient eddies on the inshore boundary of the Agulhas Current, South Africa: their relevance to the KwaZulu-Natal sardine run , 2010 .

[14]  R. Barlow,et al.  Agulhas Current Influence on the Shelf Dynamics of the KwaZulu-Natal Bight , 2016 .

[15]  Shuibo Hu,et al.  Satellite-observed variability of phytoplankton size classes associated with a cold eddy in the South China Sea. , 2014, Marine pollution bulletin.

[16]  J. Aiken,et al.  Chemotaxonomic phytoplankton patterns on the eastern boundary of the Atlantic Ocean , 2016 .

[17]  T. Platt,et al.  Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches , 2001 .

[18]  T. Platt,et al.  Ecological indicators for the pelagic zone of the ocean from remote sensing , 2008 .

[19]  Trevor Platt,et al.  Seasonal pigment patterns of surface phytoplankton in the subtropical southern hemisphere , 2007 .

[20]  D. Fabre,et al.  Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS , 2009 .

[21]  Charlie N. Barron,et al.  The Cape Cauldron: A regime of turbulent inter-ocean exchange , 2003 .

[22]  E. Boss,et al.  Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals , 2016 .

[23]  G. Hofmann,et al.  Living in the now: physiological mechanisms to tolerate a rapidly changing environment. , 2010, Annual review of physiology.

[24]  E. Boss,et al.  Regional ocean-colour chlorophyll algorithms for the Red Sea , 2015 .

[25]  M. van den Berg,et al.  Circulation patterns in the Delagoa Bight, Mozambique, and the influence of deep ocean eddies , 2010 .

[26]  Jonathan V. Durgadoo,et al.  Oceanographic observations of eddies impacting the Prince Edward Islands, South Africa , 2010, Antarctic Science.

[27]  Johann R. E. Lutjeharms The Agulhas Current , 2006 .

[28]  J. Aiken,et al.  Phytoplankton pigment absorption and ocean colour characteristics in the southern Benguela ecosystem , 2001 .

[29]  K. Arrigo,et al.  Primary production in the Southern Ocean, 1997–2006 , 2008 .

[30]  P. Monteiro,et al.  Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean , 2011 .

[31]  David A. Siegel,et al.  Revaluating ocean warming impacts on global phytoplankton , 2016 .

[32]  W. Gregg,et al.  Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models , 2014, Journal of geophysical research. Oceans.

[33]  A. D. Cicco,et al.  Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS , 2015 .

[34]  R. Laubscher,et al.  Phytoplankton production and biomass at frontal zones in the Atlantic sector of the Southern Ocean , 1993, Polar Biology.

[35]  P. Holligan,et al.  Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments , 2001 .

[36]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[37]  R. Barlow,et al.  Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem , 2008 .

[38]  S. Sathyendranath,et al.  A three-component model of phytoplankton size class for the Atlantic Ocean , 2010 .

[39]  Robert J. W. Brewin,et al.  Influence of light in the mixed-layer on the parameters of a three-component model of phytoplankton size class , 2015 .

[40]  B. Irwin,et al.  Photosynthesis of picoplankton in the oligotrophic ocean , 1983, Nature.

[41]  Robert J. W. Brewin,et al.  Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the eastern Atlantic Ocean , 2013 .

[42]  J. Ras,et al.  Validation of MERIS reflectance and chlorophyll during the BENCAL cruise October 2002: preliminary validation of new demonstration products for phytoplankton functional types and photosynthetic parameters , 2007 .

[43]  J. Lutjeharms,et al.  Oceanic Frontal Systems and Biological Enhancement , 1985 .

[44]  Graham D. Quartly,et al.  Eddies in the southern Mozambique Channel , 2004 .

[45]  Nancy Knowlton,et al.  Climate change impacts on marine ecosystems. , 2012, Annual review of marine science.

[46]  Trevor Platt,et al.  A three component classification of phytoplankton absorption spectra: Application to ocean-color data , 2011 .

[47]  R. Barlow,et al.  Physical drivers of phytoplankton production in the southern Benguela upwelling system , 2014 .

[48]  Tarron Lamont,et al.  Characterisation of mesoscale features and phytoplankton variability in the Mozambique Channel , 2014 .

[49]  E. Marañón,et al.  Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ria de Vigo, NW-Spain): Seasonal and short-time scale variability , 2006 .

[50]  Patrick M. Holligan,et al.  Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995–2005 , 2009 .

[51]  H. Hasumi,et al.  Generation and Growth Mechanism of the Natal Pulse , 2010 .

[52]  S. Sathyendranath,et al.  The influence of the Indian Ocean Dipole on interannual variations in phytoplankton size structure as revealed by Earth Observation , 2012 .

[53]  Ben A. Ward,et al.  Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters , 2015, PloS one.

[54]  J. Lutjeharms,et al.  Southern ocean thermal fronts south of Africa , 1984 .

[55]  J. Aiken,et al.  An inherent optical property approach to the estimation of size-specific photosynthetic rates in eastern boundary upwelling zones from satellite ocean colour: An initial assessment , 2009 .

[56]  A. Eggert,et al.  Seasonal and interannual phytoplankton dynamics and forcing mechanisms in the Northern Benguela upwelling system , 2016 .

[57]  M. Balarin,et al.  Pigment signatures of phytoplankton composition in the northern Benguela ecosystem during spring , 2006 .

[58]  Mark R. Abbott,et al.  Surface chlorophyll concentrations in relation to the Antarctic Polar Front: seasonal and spatial patterns from satellite observations , 2002 .

[59]  H. Claustre,et al.  Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll , 2006 .

[60]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[61]  G. Pitcher,et al.  Characteristics of the surface boundary layer important to the development of red tide on the southern Namaqua shelf of the Benguela upwelling system , 2006 .

[62]  Robert J. W. Brewin,et al.  A multicomponent model of phytoplankton size structure , 2014 .

[63]  M. Kahru,et al.  Blending of ocean colour algorithms applied to the Southern Ocean , 2010 .

[64]  Astrid Bracher,et al.  Phytoplankton functional types from Space. , 2014 .

[65]  R. Barlow,et al.  Phytoplankton chemotaxonomy in the Atlantic sector of the Southern Ocean during late summer 2009 , 2013 .

[66]  I. Hampton,et al.  Plankton productivity of the Benguela Current Large Marine Ecosystem (BCLME) , 2016 .

[67]  M. Roberts,et al.  Phytoplankton biomass and primary production in Delagoa Bight Mozambique: Application of remote sensing , 2007 .

[68]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[69]  P. J. Werdell,et al.  An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation , 2005 .

[70]  Igor M. Belkin,et al.  Rapid warming of Large Marine Ecosystems , 2009 .

[71]  Janet W. Campbell,et al.  The lognormal distribution as a model for bio‐optical variability in the sea , 1995 .

[72]  M. Schouten,et al.  A seasonal intrusion of subtropical water in the Mozambique Channel , 2005 .

[73]  P. Leeuwen,et al.  Eddies and variability in the Mozambique Channel , 2003 .

[74]  Claude Roy,et al.  Remotely sensed variability of temperature and chlorophyll in the southern Benguela: upwelling frequency and phytoplankton response , 2006 .

[75]  Reiner Schlitzer,et al.  Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates , 2002 .

[76]  R. Barlow,et al.  Mechanisms of phytoplankton adaptation to environmental variability in a shelf ecosystem , 2013 .

[77]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[78]  M. Piehler,et al.  Warming and Resource Availability Shift Food Web Structure and Metabolism , 2009, PLoS biology.

[79]  T. Lamont,et al.  Environmental influence on phytoplankton production during summer on the KwaZulu-Natal shelf of the Agulhas ecosystem§ , 2015 .

[80]  B. Allanson,et al.  Vertical stability as a controlling factor of the marine phytoplankton production at the Prince Edward Archipelago (Southern Ocean) , 1990 .

[81]  Tarron Lamont,et al.  Adaptation of phytoplankton communities to mesoscale eddies in the Mozambique Channel , 2014 .

[82]  T. Platt,et al.  Effect of phytoplankton size classes on bio-optical properties of phytoplankton in the Western Iberian coast: Application of models , 2015 .

[83]  T. Gammelsrød,et al.  Physical influence on biological production along the western shelf of Madagascar , 2014 .

[84]  M. van den Berg,et al.  Phytoplankton production and adaptation in the vicinity of Pemba and Zanzibar islands, Tanzania , 2011 .

[85]  L. Legendre,et al.  A model for the size‐fractionated biomass and production of marine phytoplankton , 1994 .

[86]  José Nestor de Paula,et al.  Distribution and vertical dynamics of planktonic communities at Sofala Bank, Mozambique , 2009 .

[87]  M. Behrenfeld,et al.  Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms. , 2010, Ecology.

[88]  I. Ansorge,et al.  Phytoplankton distribution and nitrogen dynamics in the southwest indian subtropical gyre and Southern Ocean waters , 2010 .

[89]  A. Bricaud,et al.  An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing , 2011 .

[90]  Pierrick Penven,et al.  The Benguela: A laboratory for comparative modeling studies , 2009 .

[91]  R. Barlow,et al.  Phytoplankton production and physiological adaptation on the southeastern shelf of the Agulhas ecosystem , 2010 .

[92]  P. Froneman,et al.  Biology in the oceanographic environment , 2008 .

[93]  M. Ostrowski,et al.  The Benguela Current: An ecosystem of four components , 2009 .

[94]  Hervé Demarcq,et al.  Climatology and Variability of Sea Surface Temperature and Surface Chlorophyll in the Benguela and Agulhas Ecosystems As Observed by Satellite Imagery , 2003 .

[95]  M. Zubkov,et al.  Ultraplankton distribution in surface waters of the Mozambique Channel — flow cytometry and satellite imagery , 2003 .

[96]  José Nestor de Paula,et al.  Variation of phytoplankton assemblages along the Mozambique coast as revealed by HPLC and microscopy , 2013 .

[97]  G. Pitcher,et al.  Spatio-temporal variability of phytoplankton in the southern Benguela upwelling system , 1992 .