Uniform Convergence of Discrete Curvatures from Nets of Curvature Lines

We study discrete curvatures computed from nets of curvature lines on a given smooth surface and prove their uniform convergence to smooth principal curvatures. We provide explicit error bounds, with constants depending only on properties of the smooth limit surface and the shape regularity of the discrete net.

[1]  Karl Weierstrass,et al.  Ueber parallele Flächen , 1882 .

[2]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[3]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[4]  Johannes Wallner,et al.  Geometric modeling with conical meshes and developable surfaces , 2006, SIGGRAPH 2006.

[5]  Malcolm A. Sabin,et al.  Mathematics of Surfaces XII, 12th IMA International Conference, Sheffield, UK, September 4-6, 2007, Proceedings , 2007, IMA Conference on the Mathematics of Surfaces.

[6]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[7]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[8]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[9]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[10]  Tim Hoffmann Discrete Hashimoto Surfaces and a Doubly Discrete Smoke-Ring Flow , 2008 .

[11]  Mathieu Desbrun,et al.  Discrete Differential Geometry , 2008 .

[12]  J. Sullivan Curves of Finite Total Curvature , 2006, math/0606007.

[13]  G. Darboux Leçons sur la théorie générale des surfaces , 1887 .

[14]  Martina Zähle,et al.  Integral and current representation of Federer's curvature measures , 1986 .

[15]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[16]  Guoliang Xu,et al.  Discrete Laplace-Beltrami Operator on Sphere and Optimal Spherical Triangulations , 2006, Int. J. Comput. Geom. Appl..

[17]  D. Cohen-Steiner,et al.  SECOND FUNDAMENTAL MEASURE OF GEOMETRIC SETS AND LOCAL APPROXIMATION OF CURVATURES , 2006 .

[18]  Stefan Hildebrandt,et al.  Partial Differential Equations and Calculus of Variations , 1989 .

[19]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[20]  Jia-Guang Sun,et al.  Convergence Analysis of Discrete Differential Geometry Operators over Surfaces , 2005, IMA Conference on the Mathematics of Surfaces.

[21]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[22]  Jean-Marie Morvan,et al.  Approximation of the Normal Vector Field and the Area of a Smooth Surface , 2004, Discret. Comput. Geom..

[23]  M. Berry,et al.  Umbilic points on Gaussian random surfaces , 1977 .

[24]  A. Bobenko Surfaces from Circles , 2007, 0707.1318.

[25]  A. Bobenko,et al.  Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .

[26]  Dereck S. Meek,et al.  On surface normal and Gaussian curvature approximations given data sampled from a smooth surface , 2000, Comput. Aided Geom. Des..

[27]  J. Fu,et al.  Convergence of curvatures in secant approximations , 1993 .