Long-distance measurement-device-independent multiparty quantum communication.

The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

[1]  Christian Kurtsiefer,et al.  Experimental single qubit quantum secret sharing. , 2005, Physical review letters.

[2]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[3]  Barbara M. Terhal Is entanglement monogamous? , 2004, IBM J. Res. Dev..

[4]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[5]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[6]  E. Andersson,et al.  Experimentally realizable quantum comparison of coherent states and its applications , 2006, quant-ph/0601130.

[7]  Jian-Wei Pan,et al.  Experimental quantum secret sharing and third-man quantum cryptography. , 2005, Physical review letters.

[8]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[9]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[10]  Marek Żukowski,et al.  Quest for Ghz States , 1998 .

[11]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[12]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[13]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[14]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[15]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[16]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[17]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  Hoi-Kwong Lo,et al.  Proof of unconditional security of six-state quantum key distribution scheme , 2001, Quantum Inf. Comput..

[19]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[20]  T. Jennewein,et al.  Experimental three-photon quantum nonlocality under strict locality conditions , 2013, Nature Photonics.

[21]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[22]  H. Weinfurter,et al.  Experimental demonstration of four-party quantum secret sharing. , 2006, Physical review letters.

[23]  Yang Liu,et al.  Experimental demonstration of counterfactual quantum communication. , 2011, Physical review letters.

[24]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[25]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[26]  Toshimori Honjo,et al.  Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors , 2014, Optics letters.

[27]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[28]  Caslav Brukner,et al.  All-versus-nothing violation of local realism for two entangled photons. , 2003, Physical review letters.

[29]  Tae-Gon Noh,et al.  Stabilization of a long-armed fiber-optic single-photon interferometer. , 2009, Optics express.

[30]  Jian-Wei Pan,et al.  Measurement-device-independent quantum key distribution over 200 km. , 2014, Physical review letters.

[31]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[32]  B A Bell,et al.  Experimental demonstration of graph-state quantum secret sharing , 2014, Nature Communications.

[33]  Takashi Yamamoto,et al.  Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol , 2014, Scientific Reports.

[34]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[35]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[36]  Feihu Xu,et al.  Practical aspects of measurement-device-independent quantum key distribution , 2013, 1305.6965.

[37]  Zach DeVito,et al.  Opt , 2017 .

[38]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[39]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[40]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[41]  Rupert Ursin,et al.  Experimental delayed-choice entanglement swapping , 2012 .

[42]  Jian-Wei Pan,et al.  Experimental multiparticle entanglement swapping for quantum networking. , 2009, Physical review letters.

[43]  Hoi-Kwong Lo,et al.  Multi-partite quantum cryptographic protocols with noisy GHZ States , 2007, Quantum Inf. Comput..

[44]  Asher Peres Delayed choice for entanglement swapping , 2000 .

[45]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[46]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[47]  Erika Andersson,et al.  Quantum digital signatures without quantum memory. , 2013, Physical review letters.

[48]  Juan Miguel Arrazola,et al.  Quantum communication with coherent states and linear optics , 2014, 1406.7189.

[49]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[50]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[51]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[52]  Juan Miguel Arrazola,et al.  Quantum fingerprinting with coherent states and a constant mean number of photons , 2013, 1309.5005.

[53]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[54]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[55]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[56]  J. Cariñe,et al.  Long-distance distribution of genuine energy-time entanglement , 2013, Nature Communications.

[57]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.