Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems

In this paper, we introduce a generalized Krylov subspace ${\mathcal{G}_{m}(\mathbf{A};\mathbf{u})}$ based on a square matrix sequence {Aj} and a vector sequence {uj}. Next we present a generalized Arnoldi procedure for generating an orthonormal basis of ${\mathcal{G}_{m}(\mathbf{A};\mathbf{u})}$. By applying the projection and the refined technique, we derive a restarted generalized Arnoldi method and a restarted refined generalized Arnoldi method for solving a large-scale polynomial eigenvalue problem (PEP). These two methods are applied to solve the PEP directly. Hence they preserve essential structures and properties of the PEP. Furthermore, restarting reduces the storage requirements. Some theoretical results are presented. Numerical tests report the effectiveness of these methods.

[1]  Wen-Wei Lin,et al.  Jacobi–Davidson methods for cubic eigenvalue problems , 2005, Numer. Linear Algebra Appl..

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  Ren-Cang Li,et al.  Krylov type subspace methods for matrix polynomials , 2006 .

[4]  Yunbo Zeng,et al.  Integrable Hamiltonian systems related to the polynomial eigenvalue problem , 1990 .

[5]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[6]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[7]  Willis Lin,et al.  Numerical solutions for large sparse quadratic eigenvalue problems , 1995 .

[8]  Wolfgang L. Wendland,et al.  Three‐dimensional singularities of elastic fields near vertices , 1993 .

[9]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[10]  F. A. Raeven A new Arnoldi approach for polynomial eigenproblems , 1996 .

[11]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[12]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .

[13]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[14]  Henk A. van der Vorst,et al.  Alternatives to the Rayleigh Quotient for the Quadratic Eigenvalue Problem , 2003, SIAM J. Sci. Comput..

[15]  Zhongxiao Jia,et al.  A refined subspace iteration algorithm for large sparse eigenproblems 1 Supported by the China State , 2000 .

[16]  Zhaojun Bai,et al.  Nonlinear Eigenvalue Problems , 2000, Templates for the Solution of Algebraic Eigenvalue Problems.

[17]  Nicholas J. Higham,et al.  More on pseudospectra for polynomial eigenvalue problems and applications in control theory , 2002 .

[18]  Wen-Wei Lin,et al.  Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods , 2002, SIAM J. Sci. Comput..

[19]  H. V. D. Vorst,et al.  Quadratic eigenproblems are no problem , 1996 .

[20]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[21]  Z. Jia,et al.  Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems , 1997 .

[22]  Hans Rudolf Schwarz,et al.  Methode der finiten Elemente , 1984 .

[23]  Qiang Ye,et al.  A Krylov Subspace Method for Quadratic Matrix Polynomials with Application to Constrained Least Squares Problems , 2003, SIAM J. Matrix Anal. Appl..

[24]  K. Ishihara Descent Iterations for Improving Approximate Eigenpairs of Polynomial Eigenvalue Problems with General Complex Matrices , 2002, Computing.

[25]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[26]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[27]  Gene H. Golub,et al.  A Subspace Approximation Method for the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[28]  David S. Watkins,et al.  POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .

[29]  Gene H. Golub,et al.  Matrix computations , 1983 .