Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not

[1]  J. Belleroche,et al.  Sequestosome-1 (SQSTM1) sequence variants in ALS cases in the UK: prevalence and coexistence of SQSTM1 mutations in ALS kindred with PDB , 2013, European Journal of Human Genetics.

[2]  Hideshi Kawakami,et al.  Clinicopathologic features of autosomal recessive amyotrophic lateral sclerosis associated with optineurin mutation , 2014, Neuropathology : official journal of the Japanese Society of Neuropathology.

[3]  M. P. David,et al.  Clinical variability and female penetrance in X-linked familial FTD/ALS caused by a P506S mutation in UBQLN2 , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[4]  J. Hardy,et al.  SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. , 2013, JAMA neurology.

[5]  L. Petrucelli,et al.  Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.

[6]  L. Timchenko Molecular mechanisms of muscle atrophy in myotonic dystrophies. , 2013, The international journal of biochemistry & cell biology.

[7]  R. Takahashi,et al.  Optineurin suppression causes neuronal cell death via NF‐κB pathway , 2013, Journal of neurochemistry.

[8]  L. Petrucelli,et al.  Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia , 2013, Acta Neuropathologica.

[9]  E. Rogaeva,et al.  Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. , 2013, American journal of human genetics.

[10]  Michel Goedert,et al.  Tau pathology and neurodegeneration , 2013, The Lancet Neurology.

[11]  M. Nalls,et al.  A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. , 2013, JAMA neurology.

[12]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[13]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[14]  V. Meininger,et al.  Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology , 2013, Acta Neuropathologica.

[15]  Timothy P. Levine,et al.  The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs , 2013, Bioinform..

[16]  P. S. St George-Hyslop,et al.  SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2012, Neurology.

[17]  C. van Broeckhoven,et al.  The genetics and neuropathology of frontotemporal lobar degeneration , 2012, Acta Neuropathologica.

[18]  M. Corbo,et al.  Wide phenotypic spectrum of the TARDBP gene: homozygosity of A382T mutation in a patient presenting with amyotrophic lateral sclerosis, Parkinson's disease, and frontotemporal lobar degeneration, and in neurologically healthy subject , 2012, Neurobiology of Aging.

[19]  Katherine R. Smith,et al.  Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. , 2012, American journal of human genetics.

[20]  Marc Cruts,et al.  Locus-Specific Mutation Databases for Neurodegenerative Brain Diseases , 2012, Human mutation.

[21]  J. Grafman,et al.  FUS and TDP43 genetic variability in FTD and CBS , 2012, Neurobiology of Aging.

[22]  R. Rademakers C9orf72 repeat expansions in patients with ALS and FTD , 2012, The Lancet Neurology.

[23]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[24]  John L. Robinson,et al.  Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion , 2012, Acta Neuropathologica.

[25]  J. Collinge,et al.  Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. , 2012, Brain : a journal of neurology.

[26]  D. Neary,et al.  Analysis of optineurin in frontotemporal lobar degeneration , 2012, Neurobiology of Aging.

[27]  M. Bug,et al.  Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system , 2012, Nature Cell Biology.

[28]  J. Rohrer,et al.  Phenotypic signatures of genetic frontotemporal dementia. , 2011, Current opinion in neurology.

[29]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[30]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[31]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[32]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[33]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[34]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[35]  R. Takahashi,et al.  Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation , 2011, Acta Neuropathologica.

[36]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[37]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[38]  H. Feldman,et al.  Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin , 2010, Neuron.

[39]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[40]  Paul G. Ince,et al.  Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS) , 2010, PloS one.

[41]  William D Fraser,et al.  Genome wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone , 2010, Nature Genetics.

[42]  C. van Broeckhoven,et al.  Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations , 2010, Human molecular genetics.

[43]  K. Sleegers,et al.  Genetic contribution of FUS to frontotemporal lobar degeneration , 2010, Neurology.

[44]  B. Dubois,et al.  FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. , 2010, Journal of Alzheimer's disease : JAD.

[45]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[46]  J. Gal,et al.  Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin‐independent mechanism , 2009, Journal of neurochemistry.

[47]  A. Pestronk,et al.  Valosin-containing protein disease: Inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia , 2009, Neuromuscular Disorders.

[48]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[49]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[50]  Sara E. Miller,et al.  Impaired Protein Aggregate Handling and Clearance Underlie the Pathogenesis of p97/VCP-associated Disease* , 2008, Journal of Biological Chemistry.

[51]  Mitchell R Lunn,et al.  Spinal muscular atrophy , 2008, The Lancet.

[52]  L. Goldstein,et al.  Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice , 2008, Proceedings of the National Academy of Sciences.

[53]  P. Hartikainen,et al.  Neuropathologic Features of Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions Visualized With Ubiquitin-Binding Protein p62 Immunohistochemistry , 2008, Journal of neuropathology and experimental neurology.

[54]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[55]  L. Peltonen,et al.  Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease , 2008, Nature Genetics.

[56]  Patrick Santens,et al.  CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. , 2008, Human molecular genetics.

[57]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[58]  P. Johannsen,et al.  A Reassessment of the Neuropathology of Frontotemporal Dementia Linked to Chromosome 3 , 2007, Journal of neuropathology and experimental neurology.

[59]  N. Cairns,et al.  TDP‐43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations , 2007, Journal of neuropathology and experimental neurology.

[60]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[61]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[62]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[63]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[64]  W. Dauer,et al.  Loss of the Dystonia-Associated Protein TorsinA Selectively Disrupts the Neuronal Nuclear Envelope , 2005, Neuron.

[65]  Holger Hummerich,et al.  Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia , 2005, Nature Genetics.

[66]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[67]  C. H. Ong,et al.  Progranulin is a mediator of the wound response , 2003, Nature Medicine.

[68]  Jacques P. Brown,et al.  Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. , 2002, American journal of human genetics.

[69]  X. Breakefield,et al.  Mutant torsinA, responsible for early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. , 2000, Human molecular genetics.

[70]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[71]  H. Kornhuber,et al.  Motor neuron disease. , 1995, Journal of neurology, neurosurgery, and psychiatry.

[72]  P. Favel,et al.  [Affective disorders and dementia of the frontal lobe type. Hypothesis of a pathogenic relationship]. , 1994, L'Encephale.

[73]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.