Representation and approximation of the outer inverse AT,S(2) of a matrix A

Abstract In this paper, we establish a basic representation and a representation theorem for the outer inverse A T,S (2) of a matrix A, which is the matrix X satisfying XAX=X, R(X)=T and N(X)=S. We develop several specific representations and iterative methods for A T,S (2) . We show that this representation includes many of the traditional generalized inverses and outer inverses, and the relation of our results to these outer inverses will be explored.

[1]  Yong-Lin Chen A cramer rule for solution of the general restricted linear equation , 1993 .

[2]  Yong-Lin Chen Finite algorithms for the (2)-generalized inverse , 1995 .

[3]  Chen Yonglin,et al.  The generalized Bott-Duffin inverse and its applications , 1990 .

[4]  Stephen L. Campbell,et al.  Recent applications of generalized inverses , 1982 .

[5]  Wei Yimin,et al.  A Characterization and Representation of the Drazin Inverse , 1996 .

[6]  R. Hartwig,et al.  The hyperpower iteration revisited , 1996 .

[7]  Yong-Lin Chen Representations and cramer rules for the solution of a restricted Matrix Equation , 1993 .

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[10]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[11]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[12]  Robert E. Hartwig,et al.  On the Derivative of the Drazin Inverse of a Complex Matrix , 1979 .

[13]  Yong-Lin Chen Iterative methods for computing the generalized inverses A (2) T, S of a matrix A , 1996 .

[14]  Randall E. Cline,et al.  A Drazin inverse for rectangular matrices , 1980 .

[15]  W. Mönch Anwendung des Schulz‐Verfahrens zur Nachkorrektur einer näherungsweise berechneten verallgemeinerten Inversen einer Matrix , 1981 .

[16]  T. Greville,et al.  The Souriau-Frame algorithm and the Drazin pseudoinverse , 1973 .

[17]  D. Djordjevic,et al.  Universal Iterative Methods for Computing Generalized Inverses , 1998 .

[18]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[19]  K. Tanabe Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method , 1975 .