A 5 GHz, 192.6 dBc/Hz/mW FOM, LC–VCO System With Amplitude Control Loop and LDO Voltage Regulator in 0.18 $\mu$m CMOS

To reduce phase noise degradation from oscillator tail current sources, this letter presents an inductor-capacitor voltage-controlled oscillator (LC-VCO) biased by triode metal-oxide-semiconductor transistors. The VCO system also includes an amplitude control loop and a voltage regulator to endure process, voltage, and temperature variations and to enhance power supply rejection ratio. Fabricated in a 0.18 mum CMOS process, the measured results show the adopted topology achieves a better phase noise than the conventional saturation current source. At 5.181 GHz, the VCO system demonstrates a phase noise of -104.8 dBc/Hz at 100-kHz offset, and -127.1 dBc/Hz at 1 MHz offset, while dissipating 4.2 mA from a 1.8 V supply voltage. The corresponding figures of merit at 100 kHz and 1 MHz offset are 190.3 and 192.6 dBc/Hz/mW, respectively.

[1]  Ali Hajimiri,et al.  Concepts and methods in optimization of integrated LC VCOs , 2001, IEEE J. Solid State Circuits.

[2]  Salvatore Levantino,et al.  Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion , 2002, IEEE J. Solid State Circuits.

[3]  P. Wambacq,et al.  Low-power 5 GHz LNA and VCO in 90 nm RF CMOS , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[4]  José Silva-Martínez,et al.  A frequency compensation scheme for LDO voltage regulators , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  A. Ismail,et al.  CMOS differential LC oscillator with suppressed up-converted flicker noise , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[6]  A.M. Niknejad,et al.  A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration , 2005, IEEE Journal of Solid-State Circuits.

[7]  P.R. Kinget,et al.  Tail Current-Shaping to Improve Phase Noise in LC Voltage-Controlled Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[8]  A. Abidi,et al.  Physical processes of phase noise in differential LC oscillators , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[9]  Charles Sodini,et al.  The impact of device type and sizing on phase noise mechanisms , 2003, IEEE Journal of Solid-State Circuits.

[10]  Jean-Olivier Plouchart,et al.  Design of wide-band CMOS VCO for multiband wireless LAN applications , 2003, IEEE J. Solid State Circuits.