Graph partitioning using single commodity flows

We show that the sparsest cut in graphs with <i>n</i> vertices and <i>m</i> edges can be approximated within <i>O</i>(log<sup>2</sup> <i>n</i>) factor in Õ(<i>m</i> + n<sup>3/2</sup>) time using polylogarithmic single commodity max-flow computations. Previous algorithms are based on multicommodity flows that take time Õ(<i>m</i> + n<sup>2</sup>). Our algorithm iteratively employs max-flow computations to embed an expander flow, thus providing a certificate of expansion. Our technique can also be extended to yield an <i>O</i>(log<sup>2</sup> <i>n</i>)-(pseudo-) approximation algorithm for the edge-separator problem with a similar running time.

[1]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[2]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[3]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[4]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[5]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[6]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[7]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[8]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[9]  Rajeev Motwani,et al.  Expanding graphs and the average-case analysis of algorithms for matchings and related problems , 1989, STOC '89.

[10]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[11]  Satish Rao,et al.  Finding near-optimal cuts: an empirical evaluation , 1993, SODA '93.

[12]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[13]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[14]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[15]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[16]  Shashi Shekhar,et al.  Multilevel hypergraph partitioning: application in VLSI domain , 1997, DAC.

[17]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[18]  Jochen Könemann,et al.  Faster and simpler algorithms for multicommodity flow and other fractional packing problems , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[19]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[20]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[21]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[22]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[23]  Shashi Shekhar,et al.  Multilevel hypergraph partitioning: applications in VLSI domain , 1999, IEEE Trans. Very Large Scale Integr. Syst..

[24]  Lisa Fleischer,et al.  Approximating Fractional Multicommodity Flow Independent of the Number of Commodities , 2000, SIAM J. Discret. Math..

[25]  Kevin J. Lang Finding good nearly balanced cuts in power law graphs , 2004 .

[26]  Satish Rao,et al.  A Flow-Based Method for Improving the Expansion or Conductance of Graph Cuts , 2004, IPCO.

[27]  Sanjeev Arora,et al.  O(/spl radic/log n) approximation to SPARSEST CUT in O/spl tilde/(n/sup 2/) time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[28]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[29]  Elad Hazan,et al.  O(/spl radic/log n) approximation to SPARSEST CUT in O/spl tilde/(n/sup 2/) time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[30]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[31]  Sanjeev Arora,et al.  O( p logn) Approximation to Sparsest Cut in O(n2) Time , 2004, FOCS 2004.

[32]  Kevin J. Lang Fixing two weaknesses of the Spectral Method , 2005, NIPS.

[33]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[34]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[35]  Nisheeth K. Vishnoi,et al.  On partitioning graphs via single commodity flows , 2008, STOC.