A Task-Based View on the Visual Analysis of Eye-Tracking Data

The visual analysis of eye movement data has become an emerging field of research leading to many new visualization techniques in recent years. These techniques provide insight beyond what is facilitated by traditional attention maps and gaze plots, providing important means to support statistical analysis and hypothesis building. There is no single “all-in-one” visualization to solve all possible analysis tasks. In fact, the appropriate choice of a visualization technique depends on the type of data and analysis task. We provide a taxonomy of analysis tasks that is derived from literature research of visualization techniques and embedded in our pipeline model of eye-tracking visualization. Our task taxonomy is linked to references to representative visualization techniques and, therefore, it is a basis for choosing appropriate methods of visual analysis. We also elaborate on how far statistical analysis with eye-tracking metrics can be enriched by suitable visualization and visual analytics techniques to improve the extraction of knowledge during the analysis process.

[1]  Joseph H. Goldberg,et al.  Scanpath clustering and aggregation , 2010, ETRA.

[2]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[3]  Simon J. Thorpe,et al.  Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited , 2006, Vision Research.

[4]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[5]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[6]  Sheriff Jolaoso,et al.  Scanpath comparison revisited , 2010, ETRA.

[7]  Andrew T. Duchowski,et al.  Eye tracking methodology - theory and practice, 2nd Edition , 2007 .

[8]  Michael Burch,et al.  Evaluating visual analytics with eye tracking , 2014, BELIV.

[9]  Xia Li,et al.  Visual Exploration of Eye Movement Data Using the Space-Time-Cube , 2010, GIScience.

[10]  Tim J. Smith,et al.  GraFIX: A semiautomatic approach for parsing low- and high-quality eye-tracking data , 2014, Behavior Research Methods.

[11]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[12]  TsangHoi Ying,et al.  eSeeTrack—Visualizing Sequential Fixation Patterns , 2010 .

[13]  Joseph H. Goldberg,et al.  Visual scanpath representation , 2010, ETRA.

[14]  Rui Rodrigues,et al.  A Television News Graphical Layout Analysis Method Using Eye Tracking , 2012, 2012 16th International Conference on Information Visualisation.

[15]  Päivi Majaranta,et al.  Static Visualization of Temporal Eye-Tracking Data , 2005, INTERACT.

[16]  Sung-Hee Kim,et al.  Does an Eye Tracker Tell the Truth about Visualizations?: Findings while Investigating Visualizations for Decision Making , 2012, IEEE Transactions on Visualization and Computer Graphics.

[17]  Thomas Ertl,et al.  VA2: A Visual Analytics Approach for Evaluating Visual Analytics Applications , 2016, IEEE Transactions on Visualization and Computer Graphics.

[18]  Michael Burch,et al.  Visual task solution strategies in tree diagrams , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[19]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[20]  Nadir Weibel,et al.  Let's look at the cockpit: exploring mobile eye-tracking for observational research on the flight deck , 2012, ETRA.

[21]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[22]  Hansjörg Schmauder,et al.  Saccade plots , 2014, ETRA.

[23]  Truong-Huy D. Nguyen,et al.  Interactive Visualization for Understanding of Attention Patterns , 2015, ETVIS.

[24]  Kenneth Holmqvist,et al.  Eye tracking: a comprehensive guide to methods and measures , 2011 .

[25]  N. Hari Narayanan,et al.  Comparing interfaces based on what users watch and do , 2000, ETRA.

[26]  Michael Burch,et al.  Challenges and Perspectives in Big Eye-Movement Data Visual Analytics , 2015, 2015 Big Data Visual Analytics (BDVA).

[27]  Z. Bylinskii,et al.  Eye Fixation Metrics for Large Scale Analysis of Information Visualizations , 2015 .

[28]  M. Just,et al.  Eye fixations and cognitive processes , 1976, Cognitive Psychology.

[29]  Agnieszka Bojko,et al.  Informative or Misleading? Heatmaps Deconstructed , 2009, HCI.

[30]  Thomas Ertl,et al.  AOI hierarchies for visual exploration of fixation sequences , 2016, ETRA.

[31]  Anne R. Haake,et al.  eyePatterns: software for identifying patterns and similarities across fixation sequences , 2006, ETRA.

[32]  Truong-Huy D. Nguyen,et al.  A Visual Analytic System for Comparing Attention Patterns in Eye-Tracking Data , 2015 .

[33]  Jeffrey Heer,et al.  The VERP Explorer: A Tool for Exploring Eye Movements of Visual-Cognitive Tasks Using Recurrence Plots , 2015, ETVIS.

[34]  Daniel C. Richardson,et al.  Looking To Understand: The Coupling Between Speakers' and Listeners' Eye Movements and Its Relationship to Discourse Comprehension , 2005, Cogn. Sci..

[35]  Joseph H. Goldberg,et al.  Identifying fixations and saccades in eye-tracking protocols , 2000, ETRA.

[36]  Andrew T. Duchowski,et al.  Group-wise similarity and classification of aggregate scanpaths , 2010, ETRA '10.

[37]  Michael Burch,et al.  A visual approach for scan path comparison , 2014, ETRA.

[38]  Michael Burch,et al.  Visual Data Cleansing of Low-Level Eye-Tracking Data , 2015, ETVIS.

[39]  Michael Burch,et al.  State-of-the-Art of Visualization for Eye Tracking Data , 2014, EuroVis.

[40]  Michael Burch,et al.  Gaze Stripes: Image-Based Visualization of Eye Tracking Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[41]  Michelle A. Borkin,et al.  Eye Fixation Metrics for Large Scale Evaluation and Comparison of Information Visualizations , 2015, ETVIS.

[42]  Andrew T. Duchowski,et al.  Eye Tracking Methodology: Theory and Practice , 2003, Springer London.

[43]  T. Smith,et al.  Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes. , 2013, Journal of vision.

[44]  Daniel Weiskopf,et al.  Benchmark data for evaluating visualization and analysis techniques for eye tracking for video stimuli , 2014, BELIV.

[45]  Melanie Tory,et al.  eSeeTrack—Visualizing Sequential Fixation Patterns , 2010, IEEE Transactions on Visualization and Computer Graphics.

[46]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[47]  Raimund Dachselt,et al.  Advanced gaze visualizations for three-dimensional virtual environments , 2010, ETRA.

[48]  P. Pirolli,et al.  The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis , 2007 .

[49]  Daniel Weiskopf,et al.  AOI transition trees , 2015, Graphics Interface.

[50]  Daniel Weiskopf,et al.  AOI Rivers for Visualizing Dynamic Eye Gaze Frequencies , 2013, Comput. Graph. Forum.

[51]  Michael Burch,et al.  Visual Analytics Methodology for Eye Movement Studies , 2012, IEEE Transactions on Visualization and Computer Graphics.

[52]  Daniel Weiskopf,et al.  Space-Time Visual Analytics of Eye-Tracking Data for Dynamic Stimuli , 2013, IEEE Transactions on Visualization and Computer Graphics.

[53]  Thomas Ertl,et al.  Circular heat map transition diagram , 2013, ETSA '13.

[54]  Florian Heimerl,et al.  ISeeCube: visual analysis of gaze data for video , 2014, ETRA.

[55]  Michael Burch,et al.  Visual Data Cleansing of Eye Tracking Data , 2015 .