A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes

A 0.25 cm3 autonomous energy harvesting micro-platform is realized to efficiently scavenge, rectify and store ambient vibration energy with batteryless cold start-up and zero sleep-mode power consumption. The fabricated compact system integrates a high-performance vacuum-packaged piezoelectric MEMS energy harvester with a power management IC and surface-mount components including an ultra-capacitor. The power management circuit incorporates a rectification stage with ~30 mV voltage drop, a bias-Ωip stage with a novel control system for increased harvesting efficiency, a trickle charger for permanent storage of harvested energy, and a low power supply-independent bias circuitry. The overall system weighs less than 0.6 grams, does not require a precharged battery, and has power consumption of 0.5 μW in active-mode and 10 pW in sleep-mode operation. While excited with 1 g vibration, the platform is tested to charge an initially depleted 70 mF ultra-capacitor to 1.85 V in 50 minutes (at 155 Hz vibration), and a 20 mF ultra-capacitor to 1.35 V in 7.5 min (at 419 Hz). The end-to-end rectification efficiency from the harvester to the ultra-capacitor is measured as 58-86%. The system can harvest from a minimum vibration level of 0.1 g.

[1]  E. Dallago,et al.  A Self-Powered Electronic Interface for Electromagnetic Energy Harvester , 2011, IEEE Transactions on Power Electronics.

[2]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[3]  Yuanjin Zheng,et al.  A Self-Powered Power Conditioning IC for Piezoelectric Energy Harvesting From Short-Duration Vibrations , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[5]  Saibal Roy,et al.  Design , fabrication and test of integrated microscale vibration-based electromagnetic generator , 2008 .

[6]  B. H. Stark,et al.  Review of Power Conditioning for Kinetic Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[7]  T. Galchev,et al.  Microsystems for energy harvesting , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[8]  K. Najafi,et al.  Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[9]  Enrico Dallago,et al.  Active self supplied AC-DC converter for piezoelectric energy scavenging systems with supply independent bias , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[10]  G.K. Ottman,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[11]  Marco Tartagni,et al.  Micropower Design of a Fully Autonomous Energy Harvesting Circuit for Arrays of Piezoelectric Transducers , 2014, IEEE Transactions on Power Electronics.

[12]  K. Ngo,et al.  Low Frequency Pulsed Resonant Converter for Energy Harvesting , 2007, IEEE Transactions on Power Electronics.

[13]  T. Galchev,et al.  A Piezoelectric Parametric Frequency Increased Generator for Harvesting Low-Frequency Vibrations , 2012, Journal of Microelectromechanical Systems.

[14]  E. Dallago,et al.  Analytical Model of a Vibrating Electromagnetic Harvester Considering Nonlinear Effects , 2010, IEEE Transactions on Power Electronics.

[15]  S. Basrour,et al.  High damping electrostatic system for vibration energy scavenging , 2005, sOc-EUSAI '05.

[16]  E. Koukharenko,et al.  Fabrication and Test of Integrated Micro-Scale Vibration Based Electromagnetic Generator , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[17]  Heath Hofmann,et al.  Damping as a result of piezoelectric energy harvesting , 2004 .

[18]  D. Guyomar,et al.  Piezoelectric Energy Harvesting using a Synchronized Switch Technique , 2006 .

[19]  A. Romani,et al.  Joint Modeling of Piezoelectric Transducers and Power Conversion Circuits for Energy Harvesting Applications , 2013, IEEE Sensors Journal.

[20]  J.J. Shea,et al.  Foundations of Vacuum Science and Technology , 1998, IEEE Electrical Insulation Magazine.

[21]  Yiannos Manoli,et al.  Efficient Energy Harvesting With Electromagnetic Energy Transducers Using Active Low-Voltage Rectification and Maximum Power Point Tracking , 2012, IEEE Journal of Solid-State Circuits.

[22]  Yiannos Manoli,et al.  A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters , 2012, IEEE Journal of Solid-State Circuits.

[23]  S. Ben-Yaakov,et al.  New resonant rectifier for capacitive sources , 2004, 2004 23rd IEEE Convention of Electrical and Electronics Engineers in Israel.

[24]  D.P. Arnold,et al.  Review of Microscale Magnetic Power Generation , 2007, IEEE Transactions on Magnetics.

[25]  Saibal Roy,et al.  Self-powered autonomous wireless sensor node using vibration energy harvesting , 2008 .

[26]  D. Briand,et al.  A sub 100µW UWB sensor-node powered by a piezoelectric vibration harvester , 2012, 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS).

[27]  K. Najafi,et al.  Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications , 2008, IEEE Sensors Journal.

[28]  Junru Wu,et al.  Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading , 2012 .

[29]  Khalil Najafi,et al.  A CMOS-compatible piezoelectric vibration energy scavenger based on the integration of bulk PZT films on silicon , 2010, 2010 International Electron Devices Meeting.

[30]  Wen-Jong Wu,et al.  An improved analysis of the SSHI interface in piezoelectric energy harvesting , 2007 .

[31]  Robert Puers,et al.  An electret-based electrostatic u-generator , 2003 .

[32]  V. Pop,et al.  Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system , 2010 .

[33]  Takeaki Shimanouchi,et al.  A wireless motor-condition, precise analysis system using a highly efficient vibration-energy harvester , 2013, 2013 11th IEEE International Conference on Industrial Informatics (INDIN).

[34]  K. Najafi,et al.  Wafer-Level Integration of High-Quality Bulk Piezoelectric Ceramics on Silicon , 2013, IEEE Transactions on Electron Devices.

[35]  Claude Richard,et al.  Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor , 2000, Smart Structures.

[36]  Mickaël Lallart,et al.  Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation , 2011, Micromachines.

[37]  M. Ghovanloo,et al.  Fully integrated wideband high-current rectifiers for inductively powered devices , 2004, IEEE Journal of Solid-State Circuits.

[38]  P. E. Allen,et al.  Low-voltage, supply independent CMOS bias circuit , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[39]  Gabriel A. Rincón-Mora,et al.  A 2-$\mu$ m BiCMOS Rectifier-Free AC–DC Piezoelectric Energy Harvester-Charger IC , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[40]  Paul K. Wright,et al.  Vibration energy harvesting to power condition monitoring sensors for industrial and manufacturing equipment , 2013 .

[41]  D. Guyomar,et al.  Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion , 2005 .

[42]  V. Pop,et al.  Shock induced energy harvesting with a MEMS harvester for automotive applications , 2011, 2011 International Electron Devices Meeting.

[43]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[44]  Ryutaro Maeda,et al.  Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O3 thin film , 2008 .

[45]  T. Galchev,et al.  An electrostatic springless inertial harvester for converting multi-dimensional low-frequency motion , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[46]  Adrien Badel,et al.  High-performance piezoelectric vibration energy reclamation , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[47]  S. Ben-Yaakov,et al.  Resonant rectifier for piezoelectric sources , 2005, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005..

[48]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[49]  Khalil Najafi,et al.  A self-supplied inertial piezoelectric energy harvester with power-management IC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[50]  S. Priya,et al.  Piezoelectric MEMS for energy harvesting , 2012 .

[51]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[52]  Dong Sam Ha,et al.  Low-Power Design of a Self-powered Piezoelectric Energy Harvesting System With Maximum Power Point Tracking , 2012, IEEE Transactions on Power Electronics.

[53]  Julien Penders,et al.  Energy Harvesting for Autonomous Wireless Sensor Networks , 2010, IEEE Solid-State Circuits Magazine.

[54]  H. Kulah,et al.  Fully Self-Powered Electromagnetic Energy Harvesting System With Highly Efficient Dual Rail Output , 2012, IEEE Sensors Journal.

[55]  Emre Tan Topal,et al.  A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method , 2011, IEEE Sensors Journal.

[56]  Adrien Badel,et al.  A comparison between several vibration-powered piezoelectric generators for standalone systems , 2006 .

[57]  Milos Nesladek,et al.  Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering , 2004 .

[58]  Chengkuo Lee,et al.  Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect , 2009 .

[59]  Maurits Ortmanns,et al.  A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications , 2008 .

[60]  Erick O. Torres,et al.  Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  Anantha Chandrakasan,et al.  An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor , 2010, IEEE Journal of Solid-State Circuits.

[62]  Chao Lu,et al.  A Batteryless Vibration-based Energy Harvesting System for Ultra Low Power Ubiquitous Applications , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[63]  Yiannos Manoli,et al.  A Sub-500 mV Highly Efficient Active Rectifier for Energy Harvesting Applications , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[64]  Susumu Sugiyama,et al.  A micro electromagnetic low level vibration energy harvester based on MEMS technology , 2009 .

[65]  Shuo Cheng,et al.  A voltage-multiplying self-powered ac/dc converter with 0.35 V minimum input voltage for energy harvesting applications , 2011, 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[66]  Gabriel A. Rincón-Mora,et al.  A single-inductor 0.35µm CMOS energy-investing piezoelectric harvester , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[67]  Christian C. Enz,et al.  WiseNET: an ultralow-power wireless sensor network solution , 2004, Computer.

[68]  Yiannos Manoli,et al.  Autonomous and self-starting efficient micro energy harvesting interface with adaptive MPPT, buffer monitoring, and voltage stabilization , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[69]  Denis Remiens,et al.  Piezoelectric properties of sputtered PZT films: influence of structure, micro structure, film thickness (Zr,Ti) ratio and Nb substitution , 2002 .

[70]  Paul Muralt,et al.  Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting , 2009 .

[71]  Kristin L. Wood,et al.  DESIGN OF ENERGY HARVESTING TECHNOLOGY: FEASIBILITY FOR LOW- POWER WIRELESS SENSOR NETWORKS , 2010 .