Keyboard-Behavior-Based Authentication

The authors developed a large corpus of keyboard behavior based on temporary workers employed in a simulated office environment. Analysis of this corpus using stylometric techniques shows good accuracy in distinguishing users. This article is part of a special issue on security.

[1]  I.N. Bozkurt,et al.  Authorship attribution , 2007, 2007 22nd international symposium on computer and information sciences.

[2]  Carole E. Chaski,et al.  Who's At The Keyboard? Authorship Attribution in Digital Evidence Investigations , 2005, Int. J. Digit. EVid..

[3]  Hans van Halteren,et al.  New Machine Learning Methods Demonstrate the Existence of a Human Stylome , 2005, J. Quant. Linguistics.

[4]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[5]  Matthew L. Jockers,et al.  A comparative study of machine learning methods for authorship attribution , 2010, Lit. Linguistic Comput..

[6]  Ramanarayanan Viswanathan,et al.  Optimal Decision Fusion in Multiple Sensor Systems , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Haining Wang,et al.  An efficient user verification system via mouse movements , 2011, CCS '11.

[8]  Efstathios Stamatatos,et al.  A survey of modern authorship attribution methods , 2009, J. Assoc. Inf. Sci. Technol..

[9]  Shlomo Argamon,et al.  Computational methods in authorship attribution , 2009, J. Assoc. Inf. Sci. Technol..