Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects

Traditional printing methods offer the advantage of well-matured technology, high accuracy of depositing inks over flexible substrates at high web speeds, and low cost of fabrication. The components of a battery—the current collectors, active layers, and separator—can all be deposited using conventional printing techniques by designing suitable inks. A combination of low thickness of printed electrodes, flexible packaging, battery architecture, and material properties makes printed batteries flexible. In this paper, we will discuss material challenges and mechanical limits of flexible printed batteries. We will review several printing techniques and present examples of batteries printed using these methods. In addition, we will briefly discuss other novel non-printed compliant batteries that have unique mechanical form.

[1]  Mikito Nagata,et al.  Miniature pin-type lithium batteries for medical applications , 2005 .

[2]  R. Huggins Solid State Ionics , 1989 .

[3]  Na Li,et al.  Octahedral Co3O4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[4]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[5]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Haegyeom Kim,et al.  Recent progress on flexible lithium rechargeable batteries , 2014 .

[7]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[8]  Oh-Shim Joo,et al.  Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor , 2007 .

[9]  Christian M. Siket,et al.  Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics , 2010, Advanced materials.

[10]  Soo-Jin Park,et al.  Patterning of electrodes for mechanically robust and bendable lithium-ion batteries , 2012 .

[11]  Dimitris C. Lagoudas,et al.  Origami-inspired active structures: a synthesis and review , 2014 .

[12]  James W. Evans,et al.  Dispenser-printed planar thick-film thermoelectric energy generators , 2011 .

[13]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[14]  P. Jiang,et al.  Large-scale colloidal self-assembly by doctor blade coating. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[15]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[16]  U. Schubert,et al.  Inkjet Printing of Polymers: State of the Art and Future Developments , 2004 .

[17]  Yang-Kook Sun,et al.  Electrochemical behavior and passivation of current collectors in lithium-ion batteries , 2011 .

[18]  J. Choi,et al.  Extremely stable cycling of ultra-thin V2O5 nanowire-graphene electrodes for lithium rechargeable battery cathodes , 2012 .

[19]  N. S. Sariciftci,et al.  A self-rechargeable and flexible polymer solar battery , 2007 .

[20]  Zhiqian Wang,et al.  Development of flexible secondary alkaline battery with carbon nanotube enhanced electrodes , 2014 .

[21]  A. Ferrari,et al.  Inkjet-printed graphene electronics. , 2011, ACS nano.

[22]  Aifang Yu,et al.  An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip , 2011 .

[23]  Felix B. Dias,et al.  Trends in polymer electrolytes for secondary lithium batteries , 2000 .

[24]  Sheng-Fu Horng,et al.  P‐231: Multilayer Polymer Light‐Emitting Diodes by Blade Coating Method , 2008 .

[25]  Bruno Scrosati,et al.  Polymer electrolytes: Present, past and future , 2011 .

[26]  Qian Cheng,et al.  Folding paper-based lithium-ion batteries for higher areal energy densities. , 2013, Nano letters.

[27]  L. Nyholm,et al.  Ultrafast All-Polymer Paper-Based Batteries , 2009, Nano letters.

[28]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[29]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[30]  H. Kempa,et al.  Novel in-line method for patterned deposition of conductive structures , 2009 .

[31]  J. Olkkonen,et al.  Flexographically printed fluidic structures in paper. , 2010, Analytical chemistry.

[32]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[33]  M. Hilder,et al.  Paper-based, printed zinc–air battery , 2009 .

[34]  Ralph E. White,et al.  Characterization of Commercially Available Lithium-Ion Batteries , 1998 .

[35]  Ganesan Nagasubramanian,et al.  Corrosion of Lithium‐Ion Battery Current Collectors , 1999 .

[36]  Xiaodong Chen,et al.  Highly Stretchable, Integrated Supercapacitors Based on Single‐Walled Carbon Nanotube Films with Continuous Reticulate Architecture , 2013, Advanced materials.

[37]  M. Peckerar,et al.  A novel high energy density flexible galvanic cell , 2011 .

[38]  Fei Zhao,et al.  Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries , 2014 .

[39]  Sanat S Bhole,et al.  Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin , 2014, Science.

[40]  Seeram Ramakrishna,et al.  Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell , 2007 .

[41]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[42]  J. Fergus,et al.  The formation and stability of the solid electrolyte interface on the graphite anode , 2014 .

[43]  Keun-Ho Choi,et al.  Thin, Deformable, and Safety‐Reinforced Plastic Crystal Polymer Electrolytes for High‐Performance Flexible Lithium‐Ion Batteries , 2014 .

[44]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[46]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[47]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[48]  R. Koksbang,et al.  Review of hybrid polymer electrolytes and rechargeable lithium batteries , 1994 .

[49]  Jeff Dahn,et al.  Lithium‐Ion Cells with Aqueous Electrolytes , 1995 .

[50]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[51]  Alic Chen,et al.  Dispenser printed composite thermoelectric thick films for thermoelectric generator applications , 2011 .

[52]  Adrien Pierre,et al.  All‐Printed Flexible Organic Transistors Enabled by Surface Tension‐Guided Blade Coating , 2014, Advanced materials.

[53]  Georges Caillon,et al.  Thin and flexible lithium-ion batteries: investigation of polymer electrolytes , 2003 .

[54]  Yuhai Hu,et al.  Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies , 2014 .

[55]  Howie N. Chu,et al.  Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric , 2012, Advanced materials.

[56]  Zhixin Chen,et al.  Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries , 2010 .

[57]  Wei Wang,et al.  Novel planar-structure electrochemical devices for highly flexible semitransparent power generation/storage sources. , 2013, Nano letters.

[58]  J. Yi,et al.  Transparent and ultra-bendable all-solid-state supercapacitors without percolation problems , 2013 .

[59]  Alexander Eychmüller,et al.  A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life , 2013, Advanced materials.

[60]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[61]  J. Lange,et al.  Recent innovations in barrier technologies for plastic packaging—a review , 2003 .

[62]  Myung-Hyun Ryou,et al.  Large area multi-stacked lithium-ion batteries for flexible and rollable applications , 2014 .

[63]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[64]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[65]  Y. Leterrier Durability of nanosized oxygen-barrier coatings on polymers , 2003 .

[66]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[67]  Guihua Yu,et al.  Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. , 2013, Nano letters.

[68]  Xin Cai,et al.  Flexible fiber-type zinc–carbon battery based on carbon fiber electrodes , 2013 .

[69]  James W. Evans,et al.  Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte , 2010 .

[70]  Daniel A. Steingart,et al.  A super ink jet printed zinc–silver 3D microbattery , 2009 .

[71]  Zhenan Bao,et al.  A Three‐Dimensionally Interconnected Carbon Nanotube–Conducting Polymer Hydrogel Network for High‐Performance Flexible Battery Electrodes , 2014 .

[72]  S. Hyun,et al.  Characterization of a LiCoO2 thick film by screen-printing for a lithium ion micro-battery , 2006 .

[73]  Tse Nga Ng,et al.  Organic inkjet-patterned memory array based on ferroelectric field-effect transistors , 2011 .

[74]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[75]  A. Arias,et al.  Materials and applications for large area electronics: solution-based approaches. , 2010, Chemical reviews.

[76]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[77]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[78]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[79]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[80]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[81]  Guangmin Zhou,et al.  Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. , 2013, ACS nano.

[82]  Yi Cui,et al.  Transparent lithium-ion batteries , 2011, Proceedings of the National Academy of Sciences.

[83]  Patrick S. Grant,et al.  Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition , 2013 .

[84]  D. Gethin,et al.  Patterning of micro-scale conductive networks using reel-to-reel flexographic printing , 2010 .

[85]  Huisheng Peng,et al.  Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. , 2014, Nano letters.

[86]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[87]  Gordon G Wallace,et al.  Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices , 2013, Nature Communications.

[88]  Qiang Zhang,et al.  High-performance flexible lithium-ion electrodes based on robust network architecture , 2012 .

[89]  Markku Rouvala,et al.  Nanomaterial-enhanced all-solid flexible zinc--carbon batteries. , 2010, ACS nano.

[90]  Yi Cui,et al.  Lithium‐Ion Textile Batteries with Large Areal Mass Loading , 2011 .

[91]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[92]  Gordon G Wallace,et al.  Buckled, Stretchable Polypyrrole Electrodes for Battery Applications , 2011, Advanced materials.

[93]  Siegfried Bauer,et al.  Flexible electronics: Sophisticated skin. , 2013, Nature materials.

[94]  S. Hyun,et al.  Mechanical and electrical properties of a LiCoO2 cathode prepared by screen-printing for a lithium-ion micro-battery , 2007 .

[95]  Vivek Subramanian,et al.  Characterization and optimization of a printed, primary silver–zinc battery , 2012 .

[96]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[97]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[98]  Carter S. Haines,et al.  Biscrolling Nanotube Sheets and Functional Guests into Yarns , 2011, Science.

[99]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[100]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[101]  Zhiqian Wang,et al.  Fabrication of High‐Performance Flexible Alkaline Batteries by Implementing Multiwalled Carbon Nanotubes and Copolymer Separator , 2014, Advanced materials.

[102]  Daniel A. Steingart,et al.  Electrochemical-Mechanical Analysis of Printed Silver Electrodes in a Microfluidic Device , 2011 .

[103]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[104]  B. Wei,et al.  Materials and Structures for Stretchable Energy Storage and Conversion Devices , 2014, Advanced materials.

[105]  Lin Jia,et al.  Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin , 2014, Nature Communications.

[106]  Marcel Schmitt,et al.  Slot-die processing of lithium-ion battery electrodes—Coating window characterization , 2013 .

[107]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[108]  James W. Evans,et al.  Integration of dispenser-printed ultra-low-voltage thermoelectric and energy storage devices , 2012 .

[109]  Juhwan Kim,et al.  Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation , 2007 .

[110]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[111]  Claudio Gerbaldi,et al.  Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries , 2012 .

[112]  Robert A. Street,et al.  All jet-printed polymer thin-film transistor active-matrix backplanes , 2004 .

[113]  Yang Yang,et al.  Multicolor Organic Light-Emitting Diodes Processed by Hybrid Inkjet Printing** , 1999 .

[114]  Fei Zhao,et al.  Super‐Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries , 2013 .

[115]  E. Takeuchi,et al.  Lithium Batteries for Biomedical Applications , 2002 .

[116]  Fei Liu,et al.  Folded Structured Graphene Paper for High Performance Electrode Materials , 2012, Advanced materials.

[117]  Jun Chen,et al.  Flexible free-standing carbon nanotube films for model lithium-ion batteries , 2009 .

[118]  Kisuk Kang,et al.  A Stretchable Polymer–Carbon Nanotube Composite Electrode for Flexible Lithium‐Ion Batteries: Porosity Engineering by Controlled Phase Separation , 2012 .

[119]  Brian E. Conway,et al.  Development of high-capacity primary alkaline manganese dioxide/zinc cells consisting of Bi-doping of MnO2 , 2005 .

[120]  M. Skorobogatiy,et al.  Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO4 Cathode and Li4Ti5O12 Anode for Applications in Smart Textiles , 2011, 1106.4185.

[121]  J. Do,et al.  Thick-film nickel–metal-hydride battery based on porous ceramic substrates , 2003 .

[122]  Li-Jun Wan,et al.  Inkjet-printed thin films of nanostructured elctrode materials for lithium-ion batteries , 2013 .

[123]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[124]  Sheng-Fu Horng,et al.  Polymer solar cell by blade coating , 2009 .

[125]  José R. Ramos-Barrado,et al.  High-energy, efficient and transparent electrode for lithium batteries , 2010 .

[126]  Bin Liu,et al.  Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries , 2013, Scientific Reports.

[127]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[128]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[129]  W. Schuhmann,et al.  Optimization of primary printed batteries based on Zn/MnO2 , 2014 .

[130]  Chen Feng,et al.  Cross‐Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles: A Novel Binder‐Free and High‐Capacity Anode Material for Lithium‐Ion Batteries , 2009 .

[131]  Xiangyun Song,et al.  Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode , 2012 .

[132]  B. N. Popov,et al.  Studies on Capacity Fade of Lithium-Ion Batteries , 2000 .

[133]  Chi Cheng,et al.  Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage , 2013, Science.

[134]  Guanghui Cheng,et al.  Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. , 2011, Nanoscale.

[135]  Richard Moser,et al.  Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics , 2013 .

[136]  John A Rogers,et al.  Imprintable, Bendable, and Shape‐Conformable Polymer Electrolytes for Versatile‐Shaped Lithium‐Ion Batteries , 2013, Advanced materials.

[137]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[138]  Yuhai Hu,et al.  Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage , 2012 .

[139]  H. Kempa,et al.  Complementary Ring Oscillator Exclusively Prepared by Means of Gravure and Flexographic Printing , 2011, IEEE Transactions on Electron Devices.

[140]  S. Madhavi,et al.  Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries , 2012, Nanotechnology.

[141]  Q. Li,et al.  Nanoparticle Inks for Directed Assembly of Three‐Dimensional Periodic Structures , 2003 .

[142]  H. Sandberg,et al.  Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors , 2005 .

[143]  Chunmei Ban,et al.  Nanostructured Fe3O4/SWNT Electrode: Binder‐Free and High‐Rate Li‐Ion Anode , 2010, Advanced materials.

[144]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[145]  Hyo-Jeong Ha,et al.  A facile approach to fabricate self-standing gel-polymer electrolytes for flexible lithium-ion batteries by exploitation of UV-cured trivalent/monovalent acrylate polymer matrices , 2011 .

[146]  Chen Chen,et al.  Twisting Carbon Nanotube Fibers for Both Wire‐Shaped Micro‐Supercapacitor and Micro‐Battery , 2013, Advanced materials.

[147]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[148]  Md. Mokhlesur Rahman,et al.  Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V2O5–polypyrrole cathodes , 2012 .

[149]  J. Gilman,et al.  Nanotechnology , 2001 .

[150]  P. Ajayan,et al.  Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries. , 2011, Small.

[151]  Imrich Chlamtac,et al.  Internet of things: Vision, applications and research challenges , 2012, Ad Hoc Networks.

[152]  Jun Chen,et al.  Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery , 2007 .

[153]  Lidong Li,et al.  Flexible free-standing graphene/SnO₂ nanocomposites paper for Li-ion battery. , 2012, ACS applied materials & interfaces.

[154]  Xin Cai,et al.  Integrated power fiber for energy conversion and storage , 2013 .

[155]  Jung-Yong Lee,et al.  Wearable textile battery rechargeable by solar energy. , 2013, Nano letters.

[156]  Andrew N. Jansen,et al.  Low-cost, flexible battery packaging materials , 2002 .

[157]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[158]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[159]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[160]  Daniel A. Steingart,et al.  A flexible high potential printed battery for powering printed electronics , 2013 .

[161]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[162]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[163]  N D Robinson,et al.  Organic materials for printed electronics. , 2007, Nature materials.

[164]  Jingying Xie,et al.  Fabrication of self-binding noble metal/flexible graphene composite paper , 2012 .

[165]  Chongwu Zhou,et al.  Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. , 2012, Nano letters.

[166]  Wei Zhao,et al.  Highly conductive, free-standing and flexible graphene papers for energy conversion and storage devices , 2013 .

[167]  S. Wereley,et al.  Soft Matter , 2014 .

[168]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[169]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[170]  Qinglin Wu,et al.  Heterolayered, one-dimensional nanobuilding block mat batteries. , 2014, Nano letters.

[171]  Daniel A. Steingart,et al.  Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics , 2013 .

[172]  Y. Long,et al.  Recent developments and applications of screen-printed electrodes in environmental assays--a review. , 2012, Analytica chimica acta.

[173]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[174]  Henning Sirringhaus,et al.  Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. , 2005, Nano letters.

[175]  G. Whitesides,et al.  Foldable Printed Circuit Boards on Paper Substrates , 2010 .

[176]  Jan Fyenbo,et al.  Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing , 2010 .

[177]  Seiji Akita,et al.  Printable and foldable electrodes based on a carbon nanotube–polymer composite , 2014 .

[178]  Anuj R. Madaria,et al.  Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens , 2011, Nanotechnology.

[179]  Ying Shirley Meng,et al.  An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics , 2014 .

[180]  James W. Evans,et al.  Development of MnO2 cathode inks for flexographically printed rechargeable zinc-based battery , 2014 .

[181]  Tatsuya Shimoda,et al.  Solution-processed silicon films and transistors , 2006, Nature.

[182]  Guangyuan Zheng,et al.  Silicon-conductive nanopaper for Li-ion batteries , 2013 .

[183]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[184]  Xiangwu Zhang,et al.  Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐architecture for Flexible Lithium Ion Battery Electrodes , 2013, Advanced materials.

[185]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[186]  Shoushan Fan,et al.  Binder‐Free LiCoO2/Carbon Nanotube Cathodes for High‐Performance Lithium Ion Batteries , 2012, Advanced materials.

[187]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[188]  Bruno Scrosati,et al.  Nanomaterialien für wiederaufladbare Lithiumbatterien , 2008 .

[189]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[190]  John A. Rogers,et al.  Mechanics of curvilinear electronics , 2010 .

[191]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[192]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[193]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[194]  Heon-Cheol Shin,et al.  Cable‐Type Flexible Lithium Ion Battery Based on Hollow Multi‐Helix Electrodes , 2012, Advanced materials.

[195]  Po-Chiang Chen,et al.  Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. , 2008, Nano letters.

[196]  Hyo-Jeong Ha,et al.  UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries , 2012 .

[197]  Vivek Subramanian,et al.  A Stencil Printed, High Energy Density Silver Oxide Battery Using a Novel Photopolymerizable Poly(acrylic acid) Separator , 2015, Advanced materials.

[198]  Young-Gi Lee,et al.  Performance improvements of pouch-type flexible thin-film lithium-ion batteries by modifying sequential screen-printing process , 2014 .

[199]  Chaoyi Yan,et al.  Stretchable Silver‐Zinc Batteries Based on Embedded Nanowire Elastic Conductors , 2014 .

[200]  Shi Xue Dou,et al.  Enhanced reversible lithium storage in a nanosize silicon/graphene composite , 2010 .

[201]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[202]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[203]  Ruud Vullers,et al.  A review of the present situation and future developments of micro‐batteries for wireless autonomous sensor systems , 2012 .

[204]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[205]  Liquan Chen,et al.  Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries , 2005 .

[206]  Colin Johnston,et al.  Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors , 2009, Nanotechnology.

[207]  T. Riedl,et al.  Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes , 2006 .