The NASA-Goddard Multi-scale Modeling Framework-Land Information System: Global land/atmosphere interaction with resolved convection

The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and land-atmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMF-LIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE @? fvGCM @? Coupler @? LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting land-atmosphere interactions at cloud-scale. Global simulations of 2007-2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of large-scale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.

[1]  J. Famiglietti,et al.  The Sensitivity of West African Convective Line Water Budgets to Land Cover , 2003 .

[2]  D. Randall,et al.  Convective Precipitation Variability as a Tool for General Circulation Model Analysis , 2007 .

[3]  D. Randall,et al.  A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results , 2001 .

[4]  Karim Yessad,et al.  The hydrostatic and nonhydrostatic global model IFS / ARPEGE : deep-layer model formulation and testing , 2012 .

[5]  S. Garner,et al.  Sensitivity of Radiative–Convective Equilibrium Simulations to Horizontal Resolution , 2006 .

[6]  Minghua Zhang,et al.  On the Sensitivity of Atmospheric Ensembles to Cloud Microphysics in Long-Term Cloud-Resolving Model Simulations , 2008 .

[7]  Michael E. Baldwin,et al.  A Proposed Model-Based Methodology for Feature-Specific Prediction for High-Impact Weather , 2011 .

[8]  Noise due to the Monte Carlo independent‐column approximation: short‐term and long‐term impacts in ECHAM5 , 2008 .

[9]  Hiroaki Miura,et al.  Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators , 2010 .

[10]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[11]  Stephen R. Lewis,et al.  Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation , 2008 .

[12]  Cecelia DeLuca,et al.  Design and Implementation of Components in the Earth System Modeling Framework , 2005, Int. J. High Perform. Comput. Appl..

[13]  Eleanor Blyth,et al.  Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data , 2010 .

[14]  Shian-Jiann Lin,et al.  A finite‐volume integration method for computing pressure gradient force in general vertical coordinates , 1997 .

[15]  Michael G. Bosilovich,et al.  Global Energy and Water Budgets in MERRA , 2011 .

[16]  William M. Putman,et al.  Hurricane forecasting with the high‐resolution NASA finite volume general circulation model , 2005 .

[17]  Minghua Zhang,et al.  Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data , 2007 .

[18]  T. Carlson,et al.  Some Effects of Surface Heating and Topography on the Regional Severe Storm Environment. Part I: Three-Dimensional Simulations , 1986 .

[19]  Reply to comments by T. Janjić on ‘A finite‐volume integration method for computing pressure gradient force in general vertical coordinates’ (July B, 1997, 123, 1749–1762) , 1998 .

[20]  A. Arakawa The Cumulus Parameterization Problem: Past, Present, and Future , 2004 .

[21]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[22]  Thomas T. Warner,et al.  Sensitivity of the Great Plains Severe-Storm Environment to Soil-Moisture Distribution , 1987 .

[23]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[24]  R. Atlas,et al.  Improving Hurricane Prediction Through Innovative Global Modeling , 2007 .

[25]  W. Grabowski Coupling Cloud Processes with the Large-Scale Dynamics Using the Cloud-Resolving Convection Parameterization (CRCP) , 2001 .

[26]  W. Tao,et al.  GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating Convective Cloud Systems , 1997 .

[27]  Pierre Bénard,et al.  Dynamical kernel of the Aladin–NH spectral limited‐area model: Revised formulation and sensitivity experiments , 2010 .

[28]  James J. Hack,et al.  Response of Climate Simulation to a New Convective Parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3) , 1998 .

[29]  R. Atlas,et al.  Hurricane forecasts with a global mesoscale‐resolving model: Preliminary results with Hurricane Katrina (2005) , 2006 .

[30]  J. Curry,et al.  Confronting Models with Data: The Gewex Cloud Systems Study , 2003 .

[31]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[32]  R. Koster,et al.  A catchment-based approach to modeling land surface processes in a general circulation model , 2000 .

[33]  Patterns of Land Surface Errors and Biases in the Global Forecast System , 2011 .

[34]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[35]  A. Tompkins,et al.  Solar radiative biases in deep convective regimes: Possible implications for dynamical feedback , 2003 .

[36]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[37]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[38]  E. Kassianov,et al.  Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF , 2011 .

[39]  A Set of Prognostic Variables for Long-Term Cloud-Resolving Model Simulations , 2008 .

[40]  D. Randall,et al.  A Multiscale Modeling System: Developments, Applications, and Critical Issues , 2009 .

[41]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[42]  David A. Randall,et al.  An ocean‐atmosphere climate simulation with an embedded cloud resolving model , 2010 .

[43]  Ming-Jen Yang,et al.  On the Definition of Precipitation Efficiency , 2007 .

[44]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[45]  William S. Olson,et al.  Improving Simulations of Convective Systems from TRMM LBA: Easterly and Westerly Regimes , 2007 .

[46]  S. J. Weiss,et al.  Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-Allowing NWP , 2008 .

[47]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[48]  R. Atlas,et al.  Predicting tropical cyclogenesis with a global mesoscale model: Hierarchical multiscale interactions during the formation of tropical cyclone Nargis (2008) , 2010 .

[49]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[50]  E. Guilyardi,et al.  Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM , 2007 .

[51]  David A. Randall,et al.  Evaluation of the Simulated Interannual and Subseasonal Variability in an AMIP-Style Simulation Using the CSU Multiscale Modeling Framework , 2008 .

[52]  S. Klein,et al.  Introduction to special section on Toward Reducing Cloud‐Climate Uncertainties in Atmospheric General Circulation Models , 2005 .

[53]  E. Guilyardi,et al.  Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM , 2007 .

[54]  R. Pielke,et al.  Coupled Ocean-Cloud-Resolving Simulations of the Air–Sea Interaction over the Equatorial Western Pacific , 2001 .

[55]  A. Bondeau,et al.  Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model , 2009 .

[56]  Sujay V. Kumar,et al.  High-performance Earth system modeling with NASA/GSFC’s Land Information System , 2007, Innovations in Systems and Software Engineering.

[57]  David A. Randall,et al.  Structure of the Madden-Julian Oscillation in the Superparameterized CAM , 2009 .

[58]  R. Dickinson,et al.  The Common Land Model , 2003 .

[59]  Lamont-Doherty AGCM Precipitation Biases in the Tropical Atlantic , 2006 .

[60]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[61]  Evgueni I. Kassianov,et al.  The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation , 2010 .

[62]  E. Sarachik,et al.  Terrestrial Influence on the Annual Cycle of the Atlantic ITCZ in an AGCM Coupled to a Slab Ocean Model , 2005 .

[63]  Kevin W. Manning,et al.  Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model , 2008 .

[64]  Pawan K. Bhartia,et al.  Two new methods for deriving tropospheric column ozone from TOMS measurements: Assimilated UARS MLS/HALOE and convective‐cloud differential techniques , 1998 .

[65]  R. Purser,et al.  Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances , 2002 .

[66]  C. Adam Schlosser,et al.  Assessing Evapotranspiration Estimates from the Second Global Soil Wetness Project (GSWP-2) Simulations , 2010 .

[67]  John M. Lewis,et al.  Roots of Ensemble Forecasting , 2005 .

[68]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[69]  Boris Kompare,et al.  Environmental Modelling & Software , 2014 .

[70]  W. Tao,et al.  A contribution by ice nuclei to global warming , 2009 .

[71]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[72]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[73]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[74]  C. Bretherton,et al.  Subtropical Low Cloud Response to a Warmer Climate in a Superparameterized Climate Model. Part II: Column Modeling with a Cloud Resolving Model , 2009 .

[75]  E. Guilyardi,et al.  UNDERSTANDING EL NINO IN OCEAN-ATMOSPHERE GENERAL CIRCULATION MODELS : Progress and Challenges , 2008 .

[76]  R. Atlas,et al.  The 0.125 degree finite‐volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices , 2006 .

[77]  Kevin W. Manning,et al.  Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States , 2011 .

[78]  Cecelia DeLuca,et al.  The architecture of the Earth System Modeling Framework , 2003, Computing in Science & Engineering.

[79]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[80]  Shian-Jiann Lin,et al.  An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .

[81]  Alexander Khain,et al.  Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model , 2003 .

[82]  A. Arakawa,et al.  Toward unification of the multiscale modeling of the atmosphere , 2011 .

[83]  Stanley G. Benjamin,et al.  Some Effects of Surface Heating and Topography on the Regional Severe Storm Environment. Part II: Two-Dimensional Idealized Experiments , 1986 .

[84]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[85]  W. Tao,et al.  Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part I: Comparisons , 2009 .

[86]  Sujay V. Kumar,et al.  An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF , 2008, Environ. Model. Softw..

[87]  Richard C. J. Somerville,et al.  Orogenic Propagating Precipitation Systems over the United States in a Global Climate Model with Embedded Explicit Convection , 2011 .

[88]  J. G.,et al.  Convective Forcing Fluctuations in a Cloud-Resolving Model : Relevance to the Stochastic Parameterization Problem , 2007 .

[89]  R. Pielke Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall , 2001 .

[90]  R. Dickinson,et al.  Treatment of Undercanopy Turbulence in Land Models , 2005 .

[91]  Siegfried Schubert,et al.  NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA): Early Results and Future Directions , 2006 .

[92]  D. Randall,et al.  Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities , 2003 .

[93]  W. Tao,et al.  Reducing the Biases in Simulated Radar Reflectivities from a Bulk Microphysics Scheme: Tropical Convective Systems , 2011 .

[94]  Wei-Kuo Tao,et al.  Goddard Cumulus Ensemble (Gce) Model: Application for Understanding Preciptation Processes , 2013 .

[95]  P. Mathieu,et al.  Response of the atmosphere–ocean mixed‐layer system to anomalous ocean heat‐flux convergence , 2002 .

[96]  W. Tao,et al.  Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part II: Cloud Microphysics and Storm Dynamics Interactions , 2009 .