On Concentration Functions of Random Variables
暂无分享,去创建一个
[1] S. Bobkov. Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .
[2] A. Zaitsev,et al. A MULTIPLICATIVE INEQUALITY FOR CONCENTRATION FUNCTIONS OF n-FOLD CONVOLUTIONS , 2014, 1402.6966.
[3] J. Deshouillers,et al. On the Rate of Decay of the Concentration Function of the Sum of Independent Random Variables , 2005 .
[4] H. Kesten. A Sharper Form of the Doeblin-Lévy-Kolmogorov-Rogozin Inequality for Concentration Functions. , 1969 .
[5] V. Statulevičius,et al. Limit Theorems of Probability Theory , 2000 .
[6] M. Fradelizi. Hyperplane Sections of Convex Bodies in Isotropic Position , 1999 .
[7] C. Borell. Convex measures on locally convex spaces , 1974 .
[8] B. A. Rogozin. On the Increase of Dispersion of Sums of Independent Random Variables , 1961 .
[9] D. Hensley. Slicing convex bodies—bounds for slice area in terms of the body’s covariance , 1980 .
[10] C. Esseen. On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .
[11] K. Ball. Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .
[12] W. Pruitt. The Class of Limit Laws for Stochastically Compact Normed Sums , 1983 .
[13] A. Kolmogorov,et al. Sur les propriétés des fonctions de concentrations de M. P. Lévy , 1958 .
[14] H. Kesten. Sums of independent random variables-without moment conditions , 1972 .
[15] V. V. Petrov. Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .
[16] K. Ball. Some remarks on the geometry of convex sets , 1988 .
[17] Sergey G. Bobkov,et al. Extremal properties of half-spaces for log-concave distributions , 1996 .
[18] V. V. Petrov,et al. Limit Theorems of Probability Theory , 2000 .
[19] K. Ball. Cube slicing in ⁿ , 1986 .
[20] Estimates for the Rapid Decay of Concentration Functions of n-Fold Convolutions , 1998 .
[21] On the rate of decay of concentration functions of n-fold convolutions of probability distributions , 2011 .
[22] C. Esseen. On the concentration function of a sum of independent random variables , 1968 .