Elucidation of photovoltage origin and charge transport in Cu2O heterojunctions for solar energy conversion

Easy (green) and difficult (red) electron thermionic transport over heterointerfaces determines the photovoltage of TiO2/Ga2O3/Cu2O and TiO2/ZnO/Cu2O heterojunctions for solar energy conversion.

[1]  J. Hutter,et al.  Stable and tunable phosphonic acid dipole layer for band edge engineering of photoelectrochemical and photovoltaic heterojunction devices , 2019, Energy & Environmental Science.

[2]  Identifying Charge Transfer Mechanisms across Semiconductor Heterostructures via Surface Dipole Modulation and Multiscale Modeling. , 2018, Journal of the American Chemical Society.

[3]  W. Cui,et al.  Operando deconvolution of photovoltaic and electrocatalytic performance in ALD TiO2 protected water splitting photocathodes† †Electronic supplementary information (ESI) available: SEM images, Faradaic efficiencies, V2/ΔV–V1 curve, etc. See DOI: 10.1039/c8sc01453a , 2018, Chemical science.

[4]  Anders Hagfeldt,et al.  Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices , 2018, Nature Catalysis.

[5]  M. T. Rizi,et al.  Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer , 2018 .

[6]  M. Grätzel,et al.  Analysis of Optical Losses in a Photoelectrochemical Cell: A Tool for Precise Absorptance Estimation , 2018 .

[7]  Li-ping Zhu,et al.  Interfacial study of Cu2O/Ga2O3/AZO/TiO2 photocathode for water splitting fabricated by pulsed laser deposition , 2017 .

[8]  M. Mayer Photovoltage at semiconductor–electrolyte junctions , 2017 .

[9]  D. Nocera Solar Fuels and Solar Chemicals Industry. , 2017, Accounts of chemical research.

[10]  H. Atwater,et al.  Polycrystalline Cu2O photovoltaic devices incorporating Zn(O,S) window layers , 2017 .

[11]  N. Lewis,et al.  Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu2O , 2017 .

[12]  J. Bisquert,et al.  Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpreted from Photovoltage Decays , 2016 .

[13]  Thomas Kirchartz,et al.  Advanced Characterization Techniques for Thin Film Solar Cells , 2016 .

[14]  João Lúcio de Azevedo,et al.  Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes , 2016 .

[15]  T. Miyata,et al.  Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells , 2016 .

[16]  Michael Grätzel,et al.  Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. , 2016, Nano letters.

[17]  S. Haussener,et al.  Utilizing modeling, experiments, and statistics for the analysis of water-splitting photoelectrodes , 2016 .

[18]  T. Unold,et al.  Oxygen deficiency and Sn doping of amorphous Ga2O3 , 2016 .

[19]  A. Rockett,et al.  Simulation of Charge Transport and Recombination across Functionalized Si(111) Photoelectrodes , 2016 .

[20]  Y. Jung,et al.  Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction , 2016, Electronic Materials Letters.

[21]  K. Lim,et al.  Dopant Activation in Sn-Doped Ga2O3 Investigated by X-Ray Absorption Spectroscopy , 2015 .

[22]  S. Tilley,et al.  Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O , 2015 .

[23]  S. Miyajima,et al.  Device simulation of cuprous oxide heterojunction solar cells , 2015 .

[24]  Ian D. Sharp,et al.  Interfacial band-edge energetics for solar fuels production , 2015 .

[25]  Changli Li,et al.  Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer , 2015 .

[26]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[27]  T. Minemoto,et al.  Theoretical analysis on effect of band offsets in perovskite solar cells , 2015 .

[28]  Yuki Nishi,et al.  Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet , 2015 .

[29]  Kimberly M. Papadantonakis,et al.  A taxonomy for solar fuels generators , 2015 .

[30]  Elvira Fortunato,et al.  TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis , 2015 .

[31]  R. Gordon,et al.  Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics , 2014 .

[32]  H. Atwater,et al.  Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells , 2014 .

[33]  Frances A. Houle,et al.  Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting , 2014 .

[34]  J. Bisquert,et al.  Calculation of the Energy Band Diagram of a Photoelectrochemical Water Splitting Cell , 2014, 1407.5774.

[35]  Jian V. Li,et al.  Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells , 2014, Advanced materials.

[36]  Yi Li,et al.  Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells , 2014 .

[37]  Fuding Lin,et al.  Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. , 2014, Physical review letters.

[38]  R. Ruoff,et al.  On the improvement of photoelectrochemical performance and finite element analysis of reduced graphene oxide–BiVO4 composite electrodes , 2014 .

[39]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[40]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[41]  Yuki Nishi,et al.  Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells , 2013 .

[42]  Karl Leo,et al.  Investigation of Driving Forces for Charge Extraction in Organic Solar Cells: Transient Photocurrent Measurements on Solar Cells Showing S‐Shaped Current–Voltage Characteristics , 2013 .

[43]  Jonathan P. Mailoa,et al.  Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells , 2013 .

[44]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[45]  Yuki Nishi,et al.  High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .

[46]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[47]  Arie Zaban,et al.  All-Oxide Photovoltaics. , 2012, The journal of physical chemistry letters.

[48]  M. Neukom,et al.  Reliable extraction of organic solar cell parameters by combining steady-state and transient techniques , 2012 .

[49]  Chia-Yu Lin,et al.  Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting , 2012 .

[50]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[51]  K. Musselman,et al.  Incompatible Length Scales in Nanostructured Cu2O Solar Cells , 2012 .

[52]  Peng Wang,et al.  Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy , 2012 .

[53]  A. Pasquier,et al.  Effects of Mg composition on open circuit voltage of Cu2O-MgxZn1 xO heterojunction solar cells , 2012 .

[54]  E. Aydil,et al.  An analysis of temperature dependent current–voltage characteristics of Cu2O–ZnO heterojunction solar cells , 2011 .

[55]  Karl Leo,et al.  Influence of Hole‐Transport Layers and Donor Materials on Open‐Circuit Voltage and Shape of I–V Curves of Organic Solar Cells , 2011 .

[56]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[57]  Yuki Nishi,et al.  High-Efficiency Oxide Solar Cells with ZnO/Cu2O Heterojunction Fabricated on Thermally Oxidized Cu2O Sheets , 2011 .

[58]  Hans-Werner Schock,et al.  Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices , 2011 .

[59]  R. Scheer Activation energy of heterojunction diode currents in the limit of interface recombination , 2009 .

[60]  P. Yang,et al.  Nanowire-based all-oxide solar cells. , 2009, Journal of the American Chemical Society.

[61]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[62]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[63]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[64]  M. Zeman,et al.  Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology , 1998 .

[65]  A. D. Vos,et al.  ON THE CDS/CUINSE2 CONDUCTION-BAND DISCONTINUITY. , 1995 .