Unraveling the genomic complexity of sylvatic mosquitoes in changing Neotropical environments.

[1]  L. D. De León,et al.  Harnessing the omics revolution to address the global biodiversity crisis. , 2023, Current opinion in biotechnology.

[2]  E. Marois,et al.  Mosquito vector competence for dengue is modulated by insect-specific viruses , 2023, Nature Microbiology.

[3]  J. Waters,et al.  Rapid adaptation in a fast‐changing world: Emerging insights from insect genomics , 2022, Global change biology.

[4]  A. James,et al.  Author Correction: Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly , 2022, BMC biology.

[5]  P. Selvaraj,et al.  Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development , 2022, bioRxiv.

[6]  E. Waltz First genetically modified mosquitoes released in the United States , 2021, Nature.

[7]  J. Loaiza,et al.  The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes , 2021, Evolutionary applications.

[8]  I. Sánchez-Vargas,et al.  The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission , 2021, Insects.

[9]  J. O. Chiang,et al.  Mitochondrial genome sequencing and phylogeny of Haemagogus albomaculatus, Haemagogus leucocelaenus, Haemagogus spegazzinii, and Haemagogus tropicalis (Diptera: Culicidae) , 2020, Scientific Reports.

[10]  B. Althouse,et al.  Ecological processes underlying the emergence of novel enzootic cycles: Arboviruses in the neotropics as a case study , 2020, PLoS neglected tropical diseases.

[11]  Yasutsugu Suzuki,et al.  Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries , 2020, Current Biology.

[12]  J. Gouzy,et al.  High-quality genome sequence of white lupin provides insight into soil exploration and seed quality , 2020, Nature Communications.

[13]  R. Płoski,et al.  Hybrid de novo whole-genome assembly and annotation of the model tapeworm Hymenolepis diminuta , 2019, Scientific Data.

[14]  E. Bornberg-Bauer,et al.  Hybrid Genome Assembly of a Neotropical Mutualistic Ant , 2019, Genome biology and evolution.

[15]  Smita Y. Patel,et al.  Sequencing of human genomes with nanopore technology , 2019, Nature Communications.

[16]  M. G. Castro,et al.  Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018 , 2019, Emerging microbes & infections.

[17]  Robert M. Waterhouse,et al.  Of Genes and Genomes: Mosquito Evolution and Diversity. , 2019, Trends in parasitology.

[18]  J. Cardoso,et al.  Description and phylogeny of the mitochondrial genome of Sabethes chloropterus, Sabethes glaucodaemon and Sabethes belisarioi (Diptera: Culicidae). , 2019, Genomics.

[19]  Richard Durbin,et al.  A High-Quality De novo Genome Assembly from a Single Mosquito Using PacBio Sequencing , 2018, bioRxiv.

[20]  M. Beranek,et al.  First Detection of Mansonia titillans (Diptera: Culicidae) Infected with St. Louis Encephalitis Virus (Flaviviridae: Flavivirus) and Bunyamwera Serogroup (Peribunyaviridae: Orthobunyavirus) in Argentina , 2018, Journal of Vector Ecology.

[21]  P. Wincker,et al.  De novo assembly and annotation of three Leptosphaeria genomes using Oxford Nanopore MinION sequencing , 2018, Scientific Data.

[22]  Sergey Koren,et al.  Improved reference genome of Aedes aegypti informs arbovirus vector control , 2018, Nature.

[23]  S. Weaver,et al.  Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti , 2018, Viruses.

[24]  D. Gubler,et al.  Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. , 2018, The Lancet. Infectious diseases.

[25]  L. Kramer,et al.  Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama , 2017, Scientific Reports.

[26]  R. Lourenço-de-Oliveira,et al.  Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations , 2017, Scientific Reports.

[27]  E. Gould,et al.  Emerging arboviruses: Why today? , 2017, One health.

[28]  D. Missé,et al.  Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission , 2017, PLoS pathogens.

[29]  Scott C Weaver,et al.  Epidemic arboviral diseases: priorities for research and public health. , 2017, The Lancet. Infectious diseases.

[30]  J. Cardoso,et al.  Characterization of mitochondrial genome of Haemagogus janthinomys (Diptera: Culicidae) , 2017, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[31]  Hugh E. Olsen,et al.  The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community , 2016, Genome Biology.

[32]  Hao Zhang,et al.  Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution , 2015, Proceedings of the National Academy of Sciences.

[33]  Sandra Gesing,et al.  VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases , 2014, Nucleic Acids Res..

[34]  James E. Allen,et al.  Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes , 2014, Science.

[35]  C. Ponting,et al.  Sequencing depth and coverage: key considerations in genomic analyses , 2014, Nature Reviews Genetics.

[36]  T. Monath,et al.  Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[37]  S. Weaver Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. , 2013, Trends in Microbiology.

[38]  Eric S. Halsey,et al.  Ilheus Virus Infection in Human, Bolivia , 2012, Emerging infectious diseases.

[39]  S. Salzberg,et al.  Repetitive DNA and next-generation sequencing: computational challenges and solutions , 2011, Nature Reviews Genetics.

[40]  S. Behura,et al.  Mosquito genomics: progress and challenges. , 2012, Annual review of entomology.

[41]  Nikos Vasilakis,et al.  Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health , 2011, Nature Reviews Microbiology.

[42]  K. Zhu,et al.  Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. , 2010, Parasitology international.

[43]  Evgeny M. Zdobnov,et al.  Genome Sequence of Aedes aegypti, a Major Arbovirus Vector , 2007, Science.

[44]  A. Barrett,et al.  Transmission cycles, host range, evolution and emergence of arboviral disease , 2004, Nature Reviews Microbiology.

[45]  R. Wilson,et al.  What is finished, and why does it matter. , 2002, Genome research.

[46]  Brenda T. Beerntsen,et al.  Genetics of Mosquito Vector Competence , 2000, Microbiology and Molecular Biology Reviews.

[47]  D. Gubler,et al.  Resurgent vector-borne diseases as a global health problem. , 1998, Emerging infectious diseases.

[48]  T. Monath,et al.  Yellow fever and dengue—the interactions of virus, vector and host in the re-emergence of epidemic disease , 1994 .

[49]  S. J. Carpenter,et al.  Mosquito Studies in the Panama Canal Zone During 1949 and 1950 (Diptera, Culicidae) , 1952 .

[50]  H. Trapido,et al.  Ecological observations on forest mosquitoes of an endemic yellow fever area in Panama. , 1951, The American journal of tropical medicine and hygiene.