Structural and Room‐Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires

In this paper, we directly correlate the microstructure and room-temperature transport behavior of individual InAs NWs. From transmission electron microscopy (TEM) studies, we distinguished between pure zinc blende (ZB) NWs and wurtzite (WZ) NWs containing stacking faults and small ZB segments. Through detailed device analysis on back-gate NW field-effect transistors (NWFETs), we found insignificant differences in the extracted transport coefficients even though the extrinsic subthreshold characteristics exhibited significantly different behavior for both types of NWs. We show with 2D transport simulations that these differences in subthreshold characteristics can be explained by the presence of polarization charges in the twinned WZ NWs, which compensate surface charges and enable full depletion of the NW channel.

[1]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[2]  Paul K. L. Yu,et al.  Influence of surface states on the extraction of transport parameters from InAs nanowire field effect transistors , 2007 .

[3]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[4]  M. Koguchi,et al.  Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type , 1992 .

[5]  H. Wieder,et al.  Properties of InAs/InAlAs heterostructures , 2001 .

[6]  Kiyoshi Takahashi,et al.  Growth of InAs Whiskers in Wurtzite Structure , 1966 .

[7]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[8]  L. Samuelson,et al.  Quantum-confinement effects in InAs–InP core–shell nanowires , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Shadi A Dayeh,et al.  High electron mobility InAs nanowire field-effect transistors. , 2007, Small.

[10]  Erik Lind,et al.  Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.

[11]  Noguchi,et al.  Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. , 1991, Physical review letters.

[12]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[13]  Federico Capasso,et al.  Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.

[14]  M. Zervos,et al.  Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs (111) nanowires , 2004 .

[15]  Hadis Morkoç,et al.  Nitride Semiconductors and Devices , 1999 .

[16]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[17]  L. Samuelson,et al.  Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy , 2007 .

[18]  E. Yu,et al.  Analysis of local carrier modulation in InAs semiconductor nanowire transistors , 2007 .

[19]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[20]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[21]  Ray R. LaPierre,et al.  GaP/GaAsP/GaP core–multishell nanowire heterostructures on (111) silicon , 2007 .

[22]  E. Yu,et al.  Field dependent transport properties in InAs nanowire field effect transistors. , 2008, Nano letters (Print).

[23]  L. Samuelson,et al.  Tunable effective g factor in InAs nanowire quantum dots , 2005 .

[24]  G. Patriarche,et al.  Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth , 2005 .

[25]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[26]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[27]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[28]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[29]  E. Lundgren,et al.  Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy , 2004, Nature materials.

[30]  K. Dick,et al.  A New Understanding of Au‐Assisted Growth of III–V Semiconductor Nanowires , 2005 .

[31]  Lars Samuelson,et al.  Electron transport in InAs nanowires and heterostructure nanowire devices , 2004 .

[32]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[33]  E. Yu,et al.  Growth of InAs Nanowires on SiO2 Substrates: Nucleation, Evolution, and the Role of Au Nanoparticles , 2007 .

[34]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[35]  H. D. Park,et al.  Si-assisted growth of InAs nanowires , 2006 .

[36]  O. M. Gorbenko,et al.  Atomic structure of MBE-grown GaAs nanowhiskers , 2005 .

[37]  Patrick D. Carpenter,et al.  Role of molecular surface passivation in electrical transport properties of InAs nanowires. , 2008, Nano letters.

[38]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[39]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[40]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[41]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[42]  T. Ito,et al.  An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .

[43]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[44]  Paul K. L. Yu,et al.  Transport properties of InAs nanowire field effect transistors: The effects of surface states , 2007 .

[45]  E. Yu,et al.  Transport coefficients of InAs nanowires as a function of diameter. , 2009, Small.

[46]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.

[47]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[48]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[49]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[50]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .