Structural and Room‐Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires
暂无分享,去创建一个
Darija Susac | Shadi A. Dayeh | Edward T. Yu | E. Yu | K. Kavanagh | S. Dayeh | Deli Wang | D. Susac | Deli Wang | Karen L. Kavanagh | E. Yu
[1] L. Samuelson,et al. Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.
[2] Paul K. L. Yu,et al. Influence of surface states on the extraction of transport parameters from InAs nanowire field effect transistors , 2007 .
[3] S. Kodambaka,et al. Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.
[4] M. Koguchi,et al. Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type , 1992 .
[5] H. Wieder,et al. Properties of InAs/InAlAs heterostructures , 2001 .
[6] Kiyoshi Takahashi,et al. Growth of InAs Whiskers in Wurtzite Structure , 1966 .
[7] A. Majumdar,et al. Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.
[8] L. Samuelson,et al. Quantum-confinement effects in InAs–InP core–shell nanowires , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.
[9] Shadi A Dayeh,et al. High electron mobility InAs nanowire field-effect transistors. , 2007, Small.
[10] Erik Lind,et al. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.
[11] Noguchi,et al. Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. , 1991, Physical review letters.
[12] Peng Wang,et al. High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.
[13] Federico Capasso,et al. Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.
[14] M. Zervos,et al. Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs (111) nanowires , 2004 .
[15] Hadis Morkoç,et al. Nitride Semiconductors and Devices , 1999 .
[16] Lars Samuelson,et al. Nanowire resonant tunneling diodes , 2002 .
[17] L. Samuelson,et al. Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy , 2007 .
[18] E. Yu,et al. Analysis of local carrier modulation in InAs semiconductor nanowire transistors , 2007 .
[19] Walter Riess,et al. Nanowire-based one-dimensional electronics , 2006 .
[20] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[21] Ray R. LaPierre,et al. GaP/GaAsP/GaP core–multishell nanowire heterostructures on (111) silicon , 2007 .
[22] E. Yu,et al. Field dependent transport properties in InAs nanowire field effect transistors. , 2008, Nano letters (Print).
[23] L. Samuelson,et al. Tunable effective g factor in InAs nanowire quantum dots , 2005 .
[24] G. Patriarche,et al. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth , 2005 .
[25] P. Yang. Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.
[26] Kenji Hiruma,et al. Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .
[27] Shadi A Dayeh,et al. III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.
[28] Yuan Taur,et al. Fundamentals of Modern VLSI Devices , 1998 .
[29] E. Lundgren,et al. Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy , 2004, Nature materials.
[30] K. Dick,et al. A New Understanding of Au‐Assisted Growth of III–V Semiconductor Nanowires , 2005 .
[31] Lars Samuelson,et al. Electron transport in InAs nanowires and heterostructure nanowire devices , 2004 .
[32] Charles M. Lieber,et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.
[33] E. Yu,et al. Growth of InAs Nanowires on SiO2 Substrates: Nucleation, Evolution, and the Role of Au Nanoparticles , 2007 .
[34] S. Senz,et al. Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.
[35] H. D. Park,et al. Si-assisted growth of InAs nanowires , 2006 .
[36] O. M. Gorbenko,et al. Atomic structure of MBE-grown GaAs nanowhiskers , 2005 .
[37] Patrick D. Carpenter,et al. Role of molecular surface passivation in electrical transport properties of InAs nanowires. , 2008, Nano letters.
[38] Charles M. Lieber,et al. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.
[39] David Vanderbilt,et al. Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .
[40] Gilles Patriarche,et al. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.
[41] Sadao Adachi,et al. Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .
[42] T. Ito,et al. An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .
[43] Fang Qian,et al. Nanowire electronic and optoelectronic devices , 2006 .
[44] Paul K. L. Yu,et al. Transport properties of InAs nanowire field effect transistors: The effects of surface states , 2007 .
[45] E. Yu,et al. Transport coefficients of InAs nanowires as a function of diameter. , 2009, Small.
[46] E. Bakkers,et al. Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.
[47] Nakayama,et al. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.
[48] E. Bakkers,et al. Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.
[49] Kenji Hiruma,et al. GaAs p‐n junction formed in quantum wire crystals , 1992 .
[50] Jian-Gang Zhu,et al. Magnetic tunnel junctions , 2006 .