Challenges in Building Intelligent Open-domain Dialog Systems

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI [33]. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This article reviews the recent work on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify users’ emotional and social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users’ trust and gain their long-term confidence. Interactiveness refers to the system’s ability to generate interpersonal responses to achieve particular social goals such as entertainment and conforming. The studies we select to present in this survey are based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent open-domain dialog systems.

[1]  W. T. Norman,et al.  Toward an adequate taxonomy of personality attributes: replicated factors structure in peer nomination personality ratings. , 1963, Journal of abnormal and social psychology.

[2]  Joseph Weizenbaum,et al.  ELIZA—a computer program for the study of natural language communication between man and machine , 1966, CACM.

[3]  Kenneth Mark Colby,et al.  Artificial Paranoia , 1975, Artif. Intell..

[4]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[5]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[6]  Michael Gamon,et al.  A Machine Learning Approach to the Automatic Evaluation of Machine Translation , 2001, ACL.

[7]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[8]  S. Gosling,et al.  A very brief measure of the Big-Five personality domains , 2003 .

[9]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[10]  S. Shieber,et al.  A learning approach to improving sentence-level MT evaluation , 2004, TMI.

[11]  Alon Lavie,et al.  METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments , 2005, IEEvaluation@ACL.

[12]  Jean Carletta,et al.  Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization , 2005, ACL 2005.

[13]  Alon Lavie,et al.  BLANC: Learning Evaluation Metrics for MT , 2005, HLT.

[14]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[15]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[16]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[17]  Rebecca Hwa,et al.  A Re-examination of Machine Learning Approaches for Sentence-Level MT Evaluation , 2007, ACL.

[18]  Lluís Màrquez i Villodre,et al.  A Smorgasbord of Features for Automatic MT Evaluation , 2008, WMT@ACL.

[19]  Daniel Jurafsky,et al.  Measuring machine translation quality as semantic equivalence: A metric based on entailment features , 2009, Machine Translation.

[20]  Sina Jafarpour,et al.  Filter, Rank, and Transfer the Knowledge: Learning to Chat , 2010 .

[21]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[22]  Alan Ritter,et al.  Data-Driven Response Generation in Social Media , 2011, EMNLP.

[23]  Anton Leuski,et al.  NPCEditor: Creating Virtual Human Dialogue Using Information Retrieval Techniques , 2011, AI Mag..

[24]  Hang Li,et al.  A Deep Architecture for Matching Short Texts , 2013, NIPS.

[25]  Matthew Henderson,et al.  Deep Neural Network Approach for the Dialog State Tracking Challenge , 2013, SIGDIAL Conference.

[26]  Amy Beth Warriner,et al.  Norms of valence, arousal, and dominance for 13,915 English lemmas , 2013, Behavior Research Methods.

[27]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[28]  Khalil Sima'an,et al.  Fitting Sentence Level Translation Evaluation with Many Dense Features , 2014, EMNLP.

[29]  Jianfeng Gao,et al.  Modeling Interestingness with Deep Neural Networks , 2014, EMNLP.

[30]  Ryuichiro Higashinaka,et al.  Towards an open-domain conversational system fully based on natural language processing , 2014, COLING.

[31]  Gary Geunbae Lee,et al.  Acquisition and Use of Long-Term Memory for Personalized Dialog Systems , 2014, MA3HMI@INTERSPEECH.

[32]  Yelong Shen,et al.  A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval , 2014, CIKM.

[33]  Hang Li,et al.  Convolutional Neural Network Architectures for Matching Natural Language Sentences , 2014, NIPS.

[34]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[35]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[36]  Hang Li,et al.  An Information Retrieval Approach to Short Text Conversation , 2014, ArXiv.

[37]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[38]  Jianfeng Gao,et al.  A Neural Network Approach to Context-Sensitive Generation of Conversational Responses , 2015, NAACL.

[39]  Heidi Christensen,et al.  Knowledge transfer between speakers for personalised dialogue management , 2015, SIGDIAL Conference.

[40]  Jianfeng Gao,et al.  deltaBLEU: A Discriminative Metric for Generation Tasks with Intrinsically Diverse Targets , 2015, ACL.

[41]  Joelle Pineau,et al.  Hierarchical Neural Network Generative Models for Movie Dialogues , 2015, ArXiv.

[42]  Alessandro Moschitti,et al.  Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks , 2015, SIGIR.

[43]  Quoc V. Le,et al.  A Neural Conversational Model , 2015, ArXiv.

[44]  Joelle Pineau,et al.  The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems , 2015, SIGDIAL Conference.

[45]  Gary Geunbae Lee,et al.  Example-based chat-oriented dialogue system with personalized long-term memory , 2015, 2015 International Conference on Big Data and Smart Computing (BIGCOMP).

[46]  Hang Li,et al.  Neural Responding Machine for Short-Text Conversation , 2015, ACL.

[47]  Sangdo Han,et al.  Exploiting knowledge base to generate responses for natural language dialog listening agents , 2015, SIGDIAL Conference.

[48]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[49]  F. Nothdurft,et al.  Finding Appropriate Interaction Strategies for Proactive Dialogue Systems—An Open Quest , 2015 .

[50]  Joelle Pineau,et al.  How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation , 2016, EMNLP.

[51]  Joelle Pineau,et al.  Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models , 2015, AAAI.

[52]  Jianfeng Gao,et al.  A Persona-Based Neural Conversation Model , 2016, ACL.

[53]  Rabab Kreidieh Ward,et al.  Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[54]  Xuan Liu,et al.  Multi-view Response Selection for Human-Computer Conversation , 2016, EMNLP.

[55]  Jianfeng Gao,et al.  A Diversity-Promoting Objective Function for Neural Conversation Models , 2015, NAACL.

[56]  Rui Yan,et al.  Learning to Respond with Deep Neural Networks for Retrieval-Based Human-Computer Conversation System , 2016, SIGIR.

[57]  David Vandyke,et al.  On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems , 2016, ACL.

[58]  Yuta Tsuboi,et al.  Addressee and Response Selection for Multi-Party Conversation , 2016, EMNLP.

[59]  Xiang Li,et al.  StalemateBreaker: A Proactive Content-Introducing Approach to Automatic Human-Computer Conversation , 2016, IJCAI.

[60]  Xueqi Cheng,et al.  Text Matching as Image Recognition , 2016, AAAI.

[61]  Hang Li,et al.  “ Tony ” DNN Embedding for “ Tony ” Selective Read for “ Tony ” ( a ) Attention-based Encoder-Decoder ( RNNSearch ) ( c ) State Update s 4 SourceVocabulary Softmax Prob , 2016 .

[62]  Jure Leskovec,et al.  Large-scale Analysis of Counseling Conversations: An Application of Natural Language Processing to Mental Health , 2016, TACL.

[63]  Daniel Jurafsky,et al.  A Simple, Fast Diverse Decoding Algorithm for Neural Generation , 2016, ArXiv.

[64]  Maxine Eskénazi,et al.  Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning , 2016, SIGDIAL Conference.

[65]  Zhou Yu,et al.  Strategy and Policy Learning for Non-Task-Oriented Conversational Systems , 2016, SIGDIAL Conference.

[66]  David Vandyke,et al.  A Network-based End-to-End Trainable Task-oriented Dialogue System , 2016, EACL.

[67]  Nebojsa Jojic,et al.  Steering Output Style and Topic in Neural Response Generation , 2017, EMNLP.

[68]  Alan Ritter,et al.  Adversarial Learning for Neural Dialogue Generation , 2017, EMNLP.

[69]  Mitesh M. Khapra,et al.  Multimodal Dialogs (MMD): A large-scale dataset for studying multimodal domain-aware conversations , 2017, ArXiv.

[70]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[71]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.

[72]  Eric P. Xing,et al.  Toward Controlled Generation of Text , 2017, ICML.

[73]  Xiaoyu Shen,et al.  DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset , 2017, IJCNLP.

[74]  Joelle Pineau,et al.  Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses , 2017, ACL.

[75]  Verónica Pérez-Rosas,et al.  Understanding and Predicting Empathic Behavior in Counseling Therapy , 2017, ACL.

[76]  Ali Farhadi,et al.  Bidirectional Attention Flow for Machine Comprehension , 2016, ICLR.

[77]  Maxine Eskénazi,et al.  Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders , 2017, ACL.

[78]  Joelle Pineau,et al.  A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues , 2016, AAAI.

[79]  Xin Wang,et al.  Group Linguistic Bias Aware Neural Response Generation , 2017, SIGHAN@IJCNLP.

[80]  Ilya Sutskever,et al.  Learning to Generate Reviews and Discovering Sentiment , 2017, ArXiv.

[81]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.

[82]  Louis-Philippe Morency,et al.  Affect-LM: A Neural Language Model for Customizable Affective Text Generation , 2017, ACL.

[83]  Boi Faltings,et al.  Personalization in Goal-Oriented Dialog , 2017, ArXiv.

[84]  Zhoujun Li,et al.  Sequential Match Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots , 2016, ArXiv.

[85]  Pascale Fung,et al.  Nora the Empathetic Psychologist , 2017, INTERSPEECH.

[86]  Zhiguo Wang,et al.  Bilateral Multi-Perspective Matching for Natural Language Sentences , 2017, IJCAI.

[87]  Min Yang,et al.  Personalized Response Generation via Domain adaptation , 2017, SIGIR.

[88]  Jianfeng Gao,et al.  Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models , 2017, IJCNLP.

[89]  Kam-Fai Wong,et al.  Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning , 2017, EMNLP.

[90]  Jianfeng Gao,et al.  Image-Grounded Conversations: Multimodal Context for Natural Question and Response Generation , 2017, IJCNLP.

[91]  Bo Chen,et al.  Mechanism-Aware Neural Machine for Dialogue Response Generation , 2017, AAAI.

[92]  Tsung-Hsien Wen,et al.  Neural Belief Tracker: Data-Driven Dialogue State Tracking , 2016, ACL.

[93]  Wei-Ying Ma,et al.  Topic Aware Neural Response Generation , 2016, AAAI.

[94]  Xueqi Cheng,et al.  MatchZoo: A Toolkit for Deep Text Matching , 2017, ArXiv.

[95]  Yu Zhang,et al.  Flexible End-to-End Dialogue System for Knowledge Grounded Conversation , 2017, ArXiv.

[96]  Jason Weston,et al.  Learning End-to-End Goal-Oriented Dialog , 2016, ICLR.

[97]  Dongyan Zhao,et al.  RUBER: An Unsupervised Method for Automatic Evaluation of Open-Domain Dialog Systems , 2017, AAAI.

[98]  Mari Ostendorf,et al.  Sounding Board: A User-Centric and Content-Driven Social Chatbot , 2018, NAACL.

[99]  Mitesh M. Khapra,et al.  Towards Building Large Scale Multimodal Domain-Aware Conversation Systems , 2017, AAAI.

[100]  Dongyan Zhao,et al.  An Ensemble of Retrieval-Based and Generation-Based Human-Computer Conversation Systems , 2018, IJCAI.

[101]  Erik Cambria,et al.  Augmenting End-to-End Dialogue Systems With Commonsense Knowledge , 2018, AAAI.

[102]  Victor O. K. Li,et al.  Non-Autoregressive Neural Machine Translation , 2017, ICLR.

[103]  Mitesh M. Khapra,et al.  Towards Exploiting Background Knowledge for Building Conversation Systems , 2018, EMNLP.

[104]  Ashwin K. Vijayakumar,et al.  Diverse Beam Search for Improved Description of Complex Scenes , 2018, AAAI.

[105]  Xiaoyan Zhu,et al.  Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory , 2017, AAAI.

[106]  Ming-Wei Chang,et al.  A Knowledge-Grounded Neural Conversation Model , 2017, AAAI.

[107]  Aurko Roy,et al.  Fast Decoding in Sequence Models using Discrete Latent Variables , 2018, ICML.

[108]  Maxine Eskénazi,et al.  Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation , 2018, ACL.

[109]  Jun Huang,et al.  Response Ranking with Deep Matching Networks and External Knowledge in Information-seeking Conversation Systems , 2018, SIGIR.

[110]  Xiaoyu Shen,et al.  Improving Variational Encoder-Decoders in Dialogue Generation , 2018, AAAI.

[111]  Rui Zhang,et al.  Addressee and Response Selection in Multi-Party Conversations with Speaker Interaction RNNs , 2017, AAAI.

[112]  Cristian Danescu-Niculescu-Mizil,et al.  Conversations Gone Awry: Detecting Early Signs of Conversational Failure , 2018, ACL.

[113]  Ke Wang,et al.  SentiGAN: Generating Sentimental Texts via Mixture Adversarial Networks , 2018, IJCAI.

[114]  Dongyan Zhao,et al.  Smarter Response with Proactive Suggestion: A New Generative Neural Conversation Paradigm , 2018, IJCAI.

[115]  Daniel McDuff,et al.  Emotional Dialogue Generation using Image-Grounded Language Models , 2018, CHI.

[116]  Xu Sun,et al.  Diversity-Promoting GAN: A Cross-Entropy Based Generative Adversarial Network for Diversified Text Generation , 2018, EMNLP.

[117]  Harry Shum,et al.  From Eliza to XiaoIce: challenges and opportunities with social chatbots , 2018, Frontiers of Information Technology & Electronic Engineering.

[118]  Joelle Pineau,et al.  A Survey of Available Corpora for Building Data-Driven Dialogue Systems , 2015, Dialogue Discourse.

[119]  Yu Zhang,et al.  Personalizing a Dialogue System With Transfer Reinforcement Learning , 2016, AAAI.

[120]  Jason Weston,et al.  Personalizing Dialogue Agents: I have a dog, do you have pets too? , 2018, ACL.

[121]  Minlie Huang,et al.  Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders , 2018, ACL.

[122]  Xiaoyan Zhu,et al.  Generating Informative Responses with Controlled Sentence Function , 2018, ACL.

[123]  Hal Daumé,et al.  Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information , 2018, ACL.

[124]  Tat-Seng Chua,et al.  Knowledge-aware Multimodal Dialogue Systems , 2018, ACM Multimedia.

[125]  Xiaodong Liu,et al.  Stochastic Answer Networks for Machine Reading Comprehension , 2017, ACL.

[126]  Peng Xu,et al.  Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training , 2018, WASSA@EMNLP.

[127]  Jianfeng Gao,et al.  BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems , 2016, AAAI.

[128]  Fumin Shen,et al.  Chat More: Deepening and Widening the Chatting Topic via A Deep Model , 2018, SIGIR.

[129]  Marilyn A. Walker,et al.  Controlling Personality-Based Stylistic Variation with Neural Natural Language Generators , 2018, SIGDIAL Conference.

[130]  Xuan Wang,et al.  Variational Autoregressive Decoder for Neural Response Generation , 2018, EMNLP.

[131]  Gaurav Pandey,et al.  Exemplar Encoder-Decoder for Neural Conversation Generation , 2018, ACL.

[132]  Hai Zhao,et al.  Modeling Multi-turn Conversation with Deep Utterance Aggregation , 2018, COLING.

[133]  Jason Lee,et al.  Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement , 2018, EMNLP.

[134]  Percy Liang,et al.  The price of debiasing automatic metrics in natural language evalaution , 2018, ACL.

[135]  Xueqi Cheng,et al.  Learning to Control the Specificity in Neural Response Generation , 2018, ACL.

[136]  Yang Feng,et al.  Knowledge Diffusion for Neural Dialogue Generation , 2018, ACL.

[137]  Yi Pan,et al.  Conversational AI: The Science Behind the Alexa Prize , 2018, ArXiv.

[138]  Xiaoyan Zhu,et al.  Assigning Personality/Profile to a Chatting Machine for Coherent Conversation Generation , 2018, IJCAI.

[139]  Ting Liu,et al.  Neural personalized response generation as domain adaptation , 2017, World Wide Web.

[140]  Xiaoyan Zhu,et al.  Commonsense Knowledge Aware Conversation Generation with Graph Attention , 2018, IJCAI.

[141]  Bo Chen,et al.  Elastic Responding Machine for Dialog Generation with Dynamically Mechanism Selecting , 2018, AAAI.

[142]  Ying Chen,et al.  Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network , 2018, ACL.

[143]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .

[144]  Jesse Hoey,et al.  Affective Neural Response Generation , 2017, ECIR.

[145]  Antoine Bordes,et al.  Training Millions of Personalized Dialogue Agents , 2018, EMNLP.

[146]  Hoang Long Nguyen,et al.  Alquist: The Alexa Prize Socialbot , 2018, ArXiv.

[147]  Alan W. Black,et al.  A Dataset for Document Grounded Conversations , 2018, EMNLP.

[148]  Jason Weston,et al.  Retrieve and Refine: Improved Sequence Generation Models For Dialogue , 2018, SCAI@EMNLP.

[149]  Zhoujun Li,et al.  Response selection with topic clues for retrieval-based chatbots , 2016, Neurocomputing.

[150]  William Yang Wang,et al.  MojiTalk: Generating Emotional Responses at Scale , 2017, ACL.

[151]  Eric P. Xing,et al.  Target-Guided Open-Domain Conversation , 2019, ACL.

[152]  Percy Liang,et al.  Unifying Human and Statistical Evaluation for Natural Language Generation , 2019, NAACL.

[153]  Yang Feng,et al.  Incremental Transformer with Deliberation Decoder for Document Grounded Conversations , 2019, ACL.

[154]  Seungwhan Moon,et al.  OpenDialKG: Explainable Conversational Reasoning with Attention-based Walks over Knowledge Graphs , 2019, ACL.

[155]  Sungjin Lee,et al.  Consistent Dialogue Generation with Self-supervised Feature Learning , 2019, ArXiv.

[156]  Dongyan Zhao,et al.  Multi-Representation Fusion Network for Multi-Turn Response Selection in Retrieval-Based Chatbots , 2019, WSDM.

[157]  Zhoujun Li,et al.  Response Generation by Context-aware Prototype Editing , 2018, AAAI.

[158]  Jason Weston,et al.  Dialogue Natural Language Inference , 2018, ACL.

[159]  Wei Chen,et al.  EnsembleGAN: Adversarial Learning for Retrieval-Generation Ensemble Model on Short-Text Conversation , 2019, SIGIR.

[160]  Xiaodong Liu,et al.  Conversing by Reading: Contentful Neural Conversation with On-demand Machine Reading , 2019, ACL.

[161]  Rada Mihalcea,et al.  DialogueRNN: An Attentive RNN for Emotion Detection in Conversations , 2018, AAAI.

[162]  Zhou Yu,et al.  Persuasion for Good: Towards a Personalized Persuasive Dialogue System for Social Good , 2019, ACL.

[163]  Sungjin Lee,et al.  Jointly Optimizing Diversity and Relevance in Neural Response Generation , 2019, NAACL.

[164]  Tiancheng Zhao,et al.  Pretraining Methods for Dialog Context Representation Learning , 2019, ACL.

[165]  Tat-Seng Chua,et al.  Neural Multimodal Belief Tracker with Adaptive Attention for Dialogue Systems , 2019, WWW.

[166]  Osmar R. Zaïane,et al.  Evaluating Coherence in Dialogue Systems using Entailment , 2019, NAACL.

[167]  Cristian Danescu-Niculescu-Mizil,et al.  Finding Your Voice: The Linguistic Development of Mental Health Counselors , 2019, ACL.

[168]  Xiyuan Zhang,et al.  Proactive Human-Machine Conversation with Explicit Conversation Goal , 2019, ACL.

[169]  Rongzhong Lian,et al.  Learning to Select Knowledge for Response Generation in Dialog Systems , 2019, IJCAI.

[170]  Sergey I. Nikolenko,et al.  Large-Scale Transfer Learning for Natural Language Generation , 2019, ACL.

[171]  Zheng-Yu Niu,et al.  Knowledge Aware Conversation Generation with Explainable Reasoning over Augmented Graphs , 2019, EMNLP.

[172]  Jason Weston,et al.  What makes a good conversation? How controllable attributes affect human judgments , 2019, NAACL.

[173]  Zheng-Yu Niu,et al.  Knowledge Aware Conversation Generation with Reasoning on Augmented Graph , 2019, ArXiv.

[174]  Kartikeya Upasani,et al.  Constrained Decoding for Neural NLG from Compositional Representations in Task-Oriented Dialogue , 2019, ACL.

[175]  Bill Dolan,et al.  Grounded Response Generation Task at DSTC7 , 2019 .

[176]  Dilek Z. Hakkani-Tür,et al.  Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations , 2019, INTERSPEECH.

[177]  Joelle Pineau,et al.  The Second Conversational Intelligence Challenge (ConvAI2) , 2019, The NeurIPS '18 Competition.

[178]  Jason Weston,et al.  Wizard of Wikipedia: Knowledge-Powered Conversational agents , 2018, ICLR.

[179]  Feng Ji,et al.  Memory-Augmented Dialogue Management for Task-Oriented Dialogue Systems , 2018, ACM Trans. Inf. Syst..

[180]  Y-Lan Boureau,et al.  Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset , 2018, ACL.

[181]  Song Liu,et al.  Personalized Dialogue Generation with Diversified Traits , 2019, ArXiv.

[182]  Ivan Vulić,et al.  Hello, It’s GPT-2 - How Can I Help You? Towards the Use of Pretrained Language Models for Task-Oriented Dialogue Systems , 2019, EMNLP.

[183]  Lihong Li,et al.  Neural Approaches to Conversational AI , 2019, Found. Trends Inf. Retr..

[184]  EnsembleGAN , 2019, Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.

[185]  Hung-yi Lee,et al.  DyKgChat: Benchmarking Dialogue Generation Grounding on Dynamic Knowledge Graphs , 2019, EMNLP.

[186]  Xiaodong Liu,et al.  A Hybrid Retrieval-Generation Neural Conversation Model , 2019, CIKM.

[187]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[188]  James Kennedy,et al.  Affect-Driven Dialog Generation , 2019, NAACL.

[189]  Thomas Wolf,et al.  TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents , 2019, ArXiv.

[190]  Chen Cui,et al.  User Attention-guided Multimodal Dialog Systems , 2019, SIGIR.

[191]  Vivek Srikumar,et al.  Observing Dialogue in Therapy: Categorizing and Forecasting Behavioral Codes , 2019, ACL.

[192]  Emmanuel Morin,et al.  Deep Retrieval-Based Dialogue Systems: A Short Review , 2019, ArXiv.

[193]  Dian Yu,et al.  Gunrock: A Social Bot for Complex and Engaging Long Conversations , 2019, EMNLP.

[194]  M. de Rijke,et al.  Improving Background Based Conversation with Context-aware Knowledge Pre-selection , 2019, ArXiv.

[195]  Tsung-Hsien,et al.  ConveRT: Efficient and Accurate Conversational Representations from Transformers , 2019, FINDINGS.

[196]  Harry Shum,et al.  The Design and Implementation of XiaoIce, an Empathetic Social Chatbot , 2018, CL.

[197]  Jianfeng Gao,et al.  DIALOGPT : Large-Scale Generative Pre-training for Conversational Response Generation , 2019, Annual Meeting of the Association for Computational Linguistics.

[198]  Oksana Smal,et al.  POLITICAL DISCOURSE CONTENT ANALYSIS: A CRITICAL OVERVIEW OF A COMPUTERIZED TEXT ANALYSIS PROGRAM LINGUISTIC INQUIRY AND WORD COUNT (LIWC) , 2020, Naukovì zapiski Nacìonalʹnogo unìversitetu «Ostrozʹka akademìâ». Serìâ «Fìlologìâ».

[199]  M. de Rijke,et al.  Thinking Globally, Acting Locally: Distantly Supervised Global-to-Local Knowledge Selection for Background Based Conversation , 2019, AAAI.

[200]  Quoc V. Le,et al.  Towards a Human-like Open-Domain Chatbot , 2020, ArXiv.