Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm

Abstract The parameters of solar cells models have an effect on the simulation of solar cells and can be applied to monitor the working condition and diagnose potential faults for photovoltaic (PV) modules in a PV system. To accurately and efficiently extract the optimal parameters of solar cells in a limited CPU run time, a modified simplified swarm optimization (MSSO) algorithm is presented for the single diode and double diode models by minimizing the least square error between the calculated and experimental data. In MSSO, a new one-variable-update mechanism and survival-of-the-fittest policy are applied to enhance the ability of traditional SSO. To investigate the performance of MSSO, comparative studies with other well-known optimization algorithms, i.e., SSO, artificial bee colony (ABC) and simplified bird mating optimizer (SBMO), are presented, and extensive computational results are shown. The statistical data indicate that the MSSO method has the best performance among these methods in terms of efficiency, robustness and accuracy. Moreover, the current vs. voltage characteristics of the parameters extracted by MSSO coincide well with those of experimental data.

[1]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[2]  Rasoul Azizipanah-Abarghooee,et al.  A new hybrid bacterial foraging and simplified swarm optimization algorithm for practical optimal dynamic load dispatch , 2013 .

[3]  A. Kapoor,et al.  Solar cell array parameters using Lambert W-function , 2006 .

[4]  Alireza Rezazadeh,et al.  A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer , 2013 .

[5]  Leandro dos Santos Coelho,et al.  Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach , 2015 .

[6]  Wei-Chang Yeh,et al.  Simplified swarm optimization in disassembly sequencing problems with learning effects , 2012, Comput. Oper. Res..

[7]  Wei-Chang Yeh,et al.  New Parameter-Free Simplified Swarm Optimization for Artificial Neural Network Training and its Application in the Prediction of Time Series , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[8]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[9]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[10]  Kashif Ishaque,et al.  An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) , 2011 .

[11]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[12]  Shu-xian Lun,et al.  An explicit approximate I–V characteristic model of a solar cell based on padé approximants , 2013 .

[13]  Wei-Chang Yeh,et al.  An improved simplified swarm optimization , 2015, Knowl. Based Syst..

[14]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[15]  Carlos Andrés Ramos-Paja,et al.  Model-Based Degradation Analysis of Photovoltaic Modules Through Series Resistance Estimation , 2015, IEEE Transactions on Industrial Electronics.

[16]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[17]  Alireza Rezazadeh,et al.  Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach , 2013 .

[18]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001 .

[19]  Hua Wang,et al.  A Parthenogenetic Algorithm for the Founder Sequence Reconstruction Problem , 2013, J. Comput..

[20]  Noorhaniza Wahid,et al.  A hybrid network intrusion detection system using simplified swarm optimization (SSO) , 2012, Appl. Soft Comput..

[21]  Lin Lu,et al.  Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays , 2014 .

[22]  Yue Hao,et al.  A simple and efficient solar cell parameter extraction method from a single current-voltage curve , 2011 .

[23]  Xiaoli Xu,et al.  Method for Diagnosing Photovoltaic Array Fault in Solar Photovoltaic System , 2011, 2011 Asia-Pacific Power and Energy Engineering Conference.

[24]  Taher Niknam,et al.  Robust, fast and optimal solution of practical economic dispatch by a new enhanced gradient-based simplified swarm optimisation algorithm , 2013 .

[25]  Wei-Chang Yeh,et al.  Optimization of the Disassembly Sequencing Problem on the Basis of Self-Adaptive Simplified Swarm Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[26]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[27]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[28]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[29]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[30]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[31]  Wei-Chang Yeh,et al.  Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering , 2015, PloS one.

[32]  Jun Zhang,et al.  Fault Diagnosis of Photovoltaic Panels Using Dynamic Current–Voltage Characteristics , 2016, IEEE Transactions on Power Electronics.

[33]  Girish Kumar Singh,et al.  Solar power generation by PV (photovoltaic) technology: A review , 2013 .

[34]  M. Chegaar,et al.  A new method for evaluating illuminated solar cell parameters , 2001 .

[35]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[36]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[37]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[38]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[39]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[40]  Wei-Chang Yeh,et al.  A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems , 2009, Expert Syst. Appl..

[41]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[42]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[43]  Giuseppe Marco Tina,et al.  Monitoring and Diagnostics of Photovoltaic Power Plants , 2016 .

[44]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[45]  Franjo Jović,et al.  Hybrid Evolutionary-Heuristic Algorithm for Capacitor Banks Allocation , 2010 .

[46]  Wei-Chang Yeh,et al.  Novel swarm optimization for mining classification rules on thyroid gland data , 2012, Inf. Sci..

[47]  Chia-Ling Huang A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems , 2015, Reliab. Eng. Syst. Saf..