Targeting TRIM24 promotes neuroblastoma differentiation and decreases tumorigenicity via LSD1/CoREST complex

[1]  Mingzhi Han,et al.  Pharmacological targeting of Tripartite Motif Containing 24 for the treatment of glioblastoma , 2021, Journal of translational medicine.

[2]  Jeffrey T. Chang,et al.  Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer , 2021, Nature Communications.

[3]  Xiangqian Guo,et al.  The translational values of TRIM family in pan-cancers: from functions and mechanisms to clinics. , 2021, Pharmacology & therapeutics.

[4]  O. Piskareva,et al.  Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions , 2021, Journal of personalized medicine.

[5]  Zhixiang Wu,et al.  MYT1 attenuates neuroblastoma cell differentiation by interacting with the LSD1/CoREST complex , 2020, Oncogene.

[6]  P. Cole,et al.  Mechanism of Crosstalk between the LSD1 Demethylase and HDAC1 Deacetylase in the CoREST Complex , 2020, Cell reports.

[7]  Christopher J. Ott,et al.  Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands , 2018, Nature Chemical Biology.

[8]  Yanxin Li,et al.  TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma , 2017, Nature Communications.

[9]  R. Aebersold,et al.  TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. , 2016, Cancer cell.

[10]  G. Poncet-Montange,et al.  Structure-Guided Design of IACS-9571, a Selective High-Affinity Dual TRIM24-BRPF1 Bromodomain Inhibitor. , 2016, Journal of medicinal chemistry.

[11]  G. Perini,et al.  Lysine-specific demethylase (LSD1/KDM1A) and MYCN cooperatively repress tumor suppressor genes in neuroblastoma , 2015, Oncotarget.

[12]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[13]  Jing Liang,et al.  Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development. , 2014, Molecular cell.

[14]  Jin-xiang Cheng,et al.  TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway , 2014, Oncogene.

[15]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[16]  Martin Dugas,et al.  Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia , 2012, Nature Medicine.

[17]  S. Hatakeyama,et al.  TRIM proteins and cancer , 2011, Nature Reviews Cancer.

[18]  D. Patel,et al.  TRIM24 links a noncanonical histone signature to breast cancer , 2010, Nature.

[19]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[20]  J. Qin,et al.  Trim24 targets endogenous p53 for degradation , 2009, Proceedings of the National Academy of Sciences.

[21]  R. Losson,et al.  Trim24 (Tif1α): An essential ‘brake’ for retinoic acid-induced transcription to prevent liver cancer , 2008 .

[22]  Gudrun Schleiermacher,et al.  Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma , 2008, Nature.

[23]  Jessica Zucman-Rossi,et al.  Loss of Trim24 (Tif1α) gene function confers oncogenic activity to retinoic acid receptor alpha , 2007, Nature Genetics.

[24]  F. Lan,et al.  Regulation of LSD1 histone demethylase activity by its associated factors. , 2005, Molecular cell.

[25]  Min Gyu Lee,et al.  An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation , 2005, Nature.

[26]  C. Allis,et al.  Taking LSD1 to a New High , 2005, Cell.

[27]  F. Jeanmougin,et al.  A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. , 1996, The EMBO journal.

[28]  P. Chambon,et al.  The N‐terminal part of TIF1, a putative mediator of the ligand‐dependent activation function (AF‐2) of nuclear receptors, is fused to B‐raf in the oncogenic protein T18. , 1995, The EMBO journal.