Novel Optical Properties and Emerging Applications of Metal Nanostructures

This paper provides a brief overview of recent research activities concerning metal nanomaterials, including their synthesis, structure, surface plasmon absorption, surface enhanced Raman scattering (SERS), electron dynamics, emerging applications, and the historical context by which to view these subjects. We emphasize coinage metals, particularly silver and gold. Silver and gold nanostructures exhibit fascinating optical properties due to their strong optical absorption in the visible as a result of the collective oscillation of conduction band electrons, known as the surface plasmon. This is the origin of many interesting physical phenomena and related applications such as surface plasmon resonance (SPR) and SERS useful in chemical and biomedical detection and analysis. SERS offers high sensitivity and molecular specificity that are attractive for sensing and imaging applications. Electron dynamics in metal nanostructures have been studied using ultrafast laser techniques to gain fundamental insight in...

[1]  F. Mériaudeau,et al.  Fiber optic sensor based on gold island plasmon resonance , 1999 .

[2]  Jong Kang Park,et al.  Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters , 2007 .

[3]  Martin Moskovits,et al.  Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. , 2007, Journal of the American Chemical Society.

[4]  J. Lakowicz Plasmonics in Biology and Plasmon-Controlled Fluorescence , 2006, Plasmonics.

[5]  Jun Li,et al.  Size control of gold nanocrystals in citrate reduction: the third role of citrate. , 2007, Journal of the American Chemical Society.

[6]  Craig F. Bohren,et al.  How can a particle absorb more than the light incident on it , 1983 .

[7]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[8]  R. Lennox,et al.  Surface Plasmon Resonance of Gold Nanoparticle Arrays Partially Embedded in Quartz Substrates , 2007 .

[9]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[10]  Younan Xia,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[11]  de Heer WA,et al.  Nanomeasurements in Transmission Electron Microscopy. , 2000, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada.

[12]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[13]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[14]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[15]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[16]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .

[17]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[18]  M. Natan,et al.  Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films , 2000 .

[19]  Catherine J. Murphy,et al.  Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed , 2004 .

[20]  S. Nie,et al.  Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement , 2002 .

[21]  J. Boeckl,et al.  Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  C. Murphy,et al.  Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. , 2004, Journal of the American Chemical Society.

[23]  D. A. Stuart,et al.  Biological applications of localised surface plasmonic phenomenae. , 2005, IEE proceedings. Nanobiotechnology.

[24]  Thomas Huser,et al.  Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles. , 2006, Analytical chemistry.

[25]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[26]  Gregory V. Hartland,et al.  Photophysics of Nanometer Sized Metal Particles: Electron−Phonon Coupling and Coherent Excitation of Breathing Vibrational Modes , 2000 .

[27]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[28]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[29]  Thomas Huser,et al.  Intracellular pH sensors based on surface-enhanced raman scattering. , 2004, Analytical chemistry.

[30]  George C Schatz,et al.  Localized surface plasmon resonance spectroscopy near molecular resonances. , 2006, Journal of the American Chemical Society.

[31]  K. Kneipp,et al.  One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. , 2007, Nano letters.

[32]  F. J. García de Abajo,et al.  Environmental Optical Sensitivity of Gold Nanodecahedra , 2007 .

[33]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[34]  J. Creighton,et al.  Ultraviolet–visible absorption spectra of the colloidal metallic elements , 1991 .

[35]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[36]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[37]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[38]  C. Murphy,et al.  Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures , 2005 .

[39]  G. Frens Controlled nucleation for the regulation of the particle size in monodisperse gold solutions , 1973 .

[40]  Younan Xia,et al.  Shape-controlled synthesis of metal nanostructures: the case of silver. , 2005, Chemistry.

[41]  Shuming Nie,et al.  Single-Molecule Raman Spectroscopy – Fact or Fiction? , 1999, CHIMIA.

[42]  M. El-Sayed,et al.  Why is the thermalization of excited electrons in semiconductor nanoparticles so rapid? Studies on CdSe nanoparticles , 2003 .

[43]  B. R. Johnson,et al.  All-optical nanoscale pH meter. , 2006, Nano letters.

[44]  I. B. Martini,et al.  Observation of acoustic quantum beats in nanometer sized Au particles , 1998 .

[45]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[46]  Frank Bridges,et al.  Longitudinal Plasma Resonance Shifts in Gold Nanoparticle Aggregates , 2002, SPIE Optics + Photonics.

[47]  C. Haynes,et al.  Nanopatterning with Lithography , 2005 .

[48]  J. Feldmann,et al.  Ultrafast relaxation dynamics of electronic excitations in noble-metal clusters , 2000 .

[49]  Ramasamy Manoharan,et al.  Extremely Large Enhancement Factors in Surface-Enhanced Raman Scattering for Molecules on Colloidal Gold Clusters , 1998 .

[50]  Michael S. Feld,et al.  Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles , 2002 .

[51]  C. Mirkin,et al.  Multipole plasmon resonances in gold nanorods. , 2006, The journal of physical chemistry. B.

[52]  Luis M Liz-Marzán,et al.  Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[53]  J. Lakowicz,et al.  Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. , 2007, Nano letters.

[54]  Michael J Weaver,et al.  Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy. , 2002, Analytical chemistry.

[55]  Adam M. Schwartzberg,et al.  Synthesis and characterization of gold nanoparticle aggregates as novel substrates for surface-enhanced Raman scattering , 2003, SPIE Optics + Photonics.

[56]  Michael S. Feld,et al.  Single-Molecule Detection of a Cyanine Dye in Silver Colloidal Solution Using Near-Infrared Surface-Enhanced Raman Scattering , 1998 .

[57]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[58]  Sriram Natarajan,et al.  Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging. , 2008, Analytical biochemistry.

[59]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[60]  X. Xia,et al.  One-step formation of nanostructured gold layers via a galvanic exchange reaction for surface enhancement Raman scattering , 2006 .

[61]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[62]  S. Sánchez‐Cortés,et al.  Tuning charge-transfer processes in the surface-enhanced Raman scattering of l-α-phenylglycine adsorbed on silver nanostructures , 2007 .

[63]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[64]  M. Quinten,et al.  Extinction and angle-resolved light scattering from aggregated metal clusters , 1996 .

[65]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[66]  John E. Sader,et al.  Softening of the symmetric breathing mode in gold particles by laser-induced heating , 2003 .

[67]  Jian Zhang,et al.  Plasmonic Enhancement of Single-Molecule Fluorescence Near a Silver Nanoparticle , 2007, Journal of Fluorescence.

[68]  J. Lakowicz,et al.  Single-Molecule Studies of Enhanced Fluorescence on Silver Island Films , 2007, Plasmonics.

[69]  Christophe Voisin,et al.  Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles , 2001 .

[70]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[71]  R. V. Van Duyne,et al.  Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. , 2005, Journal of the American Chemical Society.

[72]  George C. Schatz,et al.  DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response , 2000 .

[73]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[74]  L. Liz‐Marzán,et al.  Magnetic-noble metal nanocomposites with morphology-dependent optical response , 2007 .

[75]  J. Lakowicz,et al.  Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. , 2006, Journal of the American Chemical Society.

[76]  Guglielmo Lanzani,et al.  COHERENT ACOUSTIC OSCILLATIONS IN METALLIC NANOPARTICLES GENERATED WITH FEMTOSECOND OPTICAL PULSES , 1997 .

[77]  Kadir Aslan,et al.  Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. , 2005, Current opinion in chemical biology.

[78]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[79]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[80]  A. Henglein Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition , 1993 .

[81]  D. Meisel,et al.  Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .

[82]  R. Corn,et al.  Surface plasmon resonance imaging measurements of ultrathin organic films. , 2003, Annual review of physical chemistry.

[83]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[84]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene , 2003, Expert review of molecular diagnostics.

[85]  George Chumanov,et al.  Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections. , 2004, The journal of physical chemistry. B.

[86]  M. El-Sayed,et al.  Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared To Solution: The Effect of the Surrounding Medium , 2002 .

[87]  Glenn P. Goodrich,et al.  Scattering Spectra of Single Gold Nanoshells , 2004 .

[88]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[89]  L. Liz‐Marzán,et al.  Heat dissipation in gold–silica core-shell nanoparticles , 2003 .

[90]  Quan Cheng,et al.  Recent advances in surface plasmon resonance based techniques for bioanalysis , 2007, Analytical and bioanalytical chemistry.

[91]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[92]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[93]  Paul Mulvaney,et al.  Influence of the Medium Refractive Index on the Optical Properties of Single Gold Triangular Prisms on a Substrate , 2008 .

[94]  J. Kimling,et al.  Turkevich method for gold nanoparticle synthesis revisited. , 2006, The journal of physical chemistry. B.

[95]  Zhong Lin Wang Structural Analysis of Self-Assembling Nanocrystal Superlattices , 1998 .

[96]  Michal Lahav,et al.  Investigations into the Electrostatically Induced Aggregation of Au Nanoparticles , 2000 .

[97]  Catherine J. Murphy,et al.  Fine-tuning the shape of gold nanorods , 2005 .

[98]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[99]  D. A. Stuart,et al.  Towards advanced chemical and biological nanosensors-An overview. , 2005, Talanta.

[100]  Younan Xia,et al.  Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors , 2002 .

[101]  M. Quinten,et al.  Absorption of scattered light in colloidal systems of aggregated particles , 1995 .

[102]  Bingling Li,et al.  SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. , 2007, Chemical communications.

[103]  J. Kneipp Nanosensors Based on SERS for Applications in Living Cells , 2006 .

[104]  George C. Schatz,et al.  Electromagnetic mechanism of SERS , 2006 .

[105]  J. Lakowicz,et al.  Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[106]  S. L. Westcott,et al.  Infrared extinction properties of gold nanoshells , 1999 .

[107]  A. Henglein,et al.  Photophysics and spectroscopy of metal particles , 2000 .

[108]  Zhou,et al.  Controlled synthesis and quantum-size effect in gold-coated nanoparticles. , 1994, Physical review. B, Condensed matter.

[109]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[110]  Paul Mulvaney,et al.  Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. , 2003, Journal of the American Chemical Society.

[111]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[112]  Chad A Mirkin,et al.  Raman dye-labeled nanoparticle probes for proteins. , 2003, Journal of the American Chemical Society.

[113]  Janina Kneipp,et al.  In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. , 2006, Nano letters.

[114]  A. Brolo,et al.  Investigation of the Adsorption of L-Cysteine on a Polycrystalline Silver Electrode by Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Second Harmonic Generation (SESHG) , 2002 .

[115]  Naomi J. Halas,et al.  Plasmonic Properties of Concentric Nanoshells , 2004 .

[116]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[117]  R. V. Van Duyne,et al.  Toward a glucose biosensor based on surface-enhanced Raman scattering. , 2003, Journal of the American Chemical Society.

[118]  Naomi J. Halas,et al.  Plasmon Resonance Shifts of Au-Coated Au 2 S Nanoshells: Insight into Multicomponent Nanoparticle Growth , 1997 .

[119]  L. Liz‐Marzán,et al.  The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres , 2007 .

[120]  Frank Bridges,et al.  Near infrared optical absorption of gold nanoparticle aggregates , 2002 .

[121]  D. Koningsberger,et al.  X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS and XANES , 1988 .

[122]  H. Iwata,et al.  High-throughput immunophenotyping by surface plasmon resonance imaging. , 2007, Analytical chemistry.

[123]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[124]  A. Hillier,et al.  Multicolor surface plasmon resonance imaging of ink jet-printed protein microarrays. , 2007, Analytical chemistry.

[125]  Jian Zhang,et al.  Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[126]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[127]  J. Lakowicz,et al.  Metal particle-enhanced fluorescent immunoassays on metal mirrors. , 2007, Analytical biochemistry.

[128]  E. Meyer,et al.  Forces in scanning probe methods , 1995 .

[129]  Catherine J Murphy,et al.  Shape-dependent plasmon-resonant gold nanoparticles. , 2006, Small.

[130]  Naomi J Halas,et al.  Immunonanoshells for targeted photothermal ablation of tumor cells , 2006, International journal of nanomedicine.

[131]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[132]  C. Murphy,et al.  Light scattering from gold nanorods: tracking material deformation , 2005 .

[133]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[134]  Song Xu,et al.  Nanofabrication of self-assembled monolayers using scanning probe lithography. , 2000, Accounts of chemical research.

[135]  Leon Hirsch,et al.  Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer , 2004, Technology in cancer research & treatment.

[136]  Thaddeus J. Norman,et al.  Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates. , 2003, Journal of the American Chemical Society.

[137]  Catherine J. Murphy,et al.  Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles , 2001 .

[138]  M. El-Sayed,et al.  Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy , 1997 .

[139]  G. Hartland,et al.  Photothermal Properties of Gold Nanoparticles , 2007 .

[140]  Thaddeus J. Norman,et al.  Structural correlations with shifts in the extended plasma resonance of gold nanoparticle aggregates , 2005 .

[141]  James R. Heath,et al.  PRESSURE/TEMPERATURE PHASE DIAGRAMS AND SUPERLATTICES OF ORGANICALLY FUNCTIONALIZED METAL NANOCRYSTAL MONOLAYERS: THE INFLUENCE OF PARTICLE SIZE, SIZE DISTRIBUTION, AND SURFACE PASSIVANT , 1997 .

[142]  Encai Hao,et al.  Optical properties of metal nanoshells , 2004 .

[143]  Xiaohua Huang,et al.  Peptide-conjugated gold nanorods for nuclear targeting. , 2007, Bioconjugate chemistry.

[144]  Steven R. Emory,et al.  Single Nanoparticle Based Optical pH Probe , 2007, Applied spectroscopy.

[145]  J. Zhang,et al.  Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles , 1997 .

[146]  Tammy Y. Olson,et al.  Gold Nanotubes Synthesized via Magnetic Alignment of Cobalt Nanoparticles as Templates , 2007 .

[147]  Marcel Ausloos,et al.  Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. Optical properties of aggregated metal spheres , 1982 .

[148]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[149]  M. Kerker,et al.  Founding fathers of light scattering and surface-enhanced Raman scattering. , 1991, Applied optics.

[150]  H. Beier,et al.  Application of Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells , 2007 .

[151]  Younan Xia,et al.  Metal Nanostructures with Hollow Interiors , 2003 .

[152]  Yu Wang,et al.  Surface-enhanced Raman scattering of some water insoluble drugs in silver hydrosols. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[153]  Tammy Y. Olson,et al.  Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. , 2006, The journal of physical chemistry. B.

[154]  Prashant K. Jain,et al.  Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles , 2006, Photochemistry and photobiology.

[155]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[156]  Dongho Kim,et al.  Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[157]  K. Kneipp,et al.  Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. , 2006, Accounts of chemical research.

[158]  Adam M. Schwartzberg,et al.  The role of reductant oxidation state in the formation and function of gold nanoparticle aggregates for SERS applications , 2004, SPIE Optics + Photonics.

[159]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[160]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[161]  B. Nikoobakht,et al.  Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra , 2003 .

[162]  J. Zhang,et al.  Femtosecond Electronic Relaxation Dynamics in Metal Nano-Particles: Effects of Surface and Size Confinement , 1996 .

[163]  P. Jain,et al.  Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. , 2007, Nanomedicine.

[164]  J. Sader,et al.  Coherent Excitation of Vibrational Modes in Gold Nanorods , 2002 .

[165]  Jiří Homola,et al.  Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly , 2003 .

[166]  Joseph M. McLellan,et al.  Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy. , 2006, The journal of physical chemistry. B.

[167]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[168]  J. Zhang,et al.  Ultrafast study of electronic relaxation dynamics in Au11 nanoclusters , 2004 .

[169]  S. Schneider,et al.  Correlation spectroscopy based on non-linear response of silver colloids (including SEHRS) , 2005 .

[170]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[171]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[172]  C. Mirkin,et al.  Photoinduced phase separation of gold in two-component nanoparticles. , 2006, Small.

[173]  B Cui,et al.  Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts. , 2007, Optics letters.

[174]  Yi Fu,et al.  Enhanced fluorescence of Cy5-labeled oligonucleotides near silver island films: a distance effect study using single molecule spectroscopy. , 2006, The journal of physical chemistry. B.

[175]  H. Korri-Youssoufi,et al.  Kinetics of the electron transfer reaction of Cytochrome c552 adsorbed on biomimetic electrode studied by time-resolved surface-enhanced resonance Raman spectroscopy and electrochemistry , 2007, European Biophysics Journal.

[176]  Near‐field imaging of surface‐enhanced second harmonic generation , 1999, Journal of microscopy.

[177]  C. Murphy,et al.  Role of ions in the colloidal synthesis of gold nanowires , 2007 .

[178]  A. Otto,et al.  Surface enhanced Raman scattering , 1983 .

[179]  A. Henglein Colloidal Palladium Nanoparticles: Reduction of Pd(II) by H2; PdCoreAuShellAgShell Particles , 2000 .

[180]  Andreas Otto,et al.  The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering , 2005 .

[181]  P. Kamat,et al.  Harvesting Photons in the Infrared. Electron Injection from Excited Tricarbocyanine Dye (IR-125) into TiO2 and Ag@TiO2 Core−Shell Nanoparticles , 2007 .

[182]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[183]  J. Zhang,et al.  Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface , 1997 .

[184]  Younan Xia,et al.  Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. , 2004, Journal of the American Chemical Society.

[185]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[186]  Ger J. M. Koper,et al.  An Alternative Method To Quantify Surface Plasmon Resonance Measurements of Adsorption on Flat Surfaces , 2002 .

[187]  Kadir Aslan,et al.  Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. , 2007, Journal of the American Chemical Society.

[188]  Catherine J. Murphy,et al.  Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles , 2001 .

[189]  J. Lakowicz,et al.  Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[190]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[191]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[192]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[193]  Joseph M. McLellan,et al.  Ultrafast laser studies of the photothermal properties of gold nanocages. , 2006, The journal of physical chemistry. B.

[194]  Thaddeus J. Norman,et al.  Comment on "gold nanoshells improve single nanoparticle molecular sensors". , 2005, Nano letters.

[195]  J. Zhang,et al.  Reduction of HAuCl4 by Na2S revisited : The case for au nanoparticle aggregates and against Au2S/Au core/shell particles , 2007 .

[196]  Andrew R. Siekkinen,et al.  Vibrational response of Au-Ag nanoboxes and nanocages to ultrafast laser-induced heating. , 2007, Nano letters.