Tree-based techniques to predict soil units

Quantitative soil–landscape models offer a method for conducting soil surveys that use statistical tools to predict natural patterns in the occurrence of particular map units across a landscape. The aim of the present study was to predict soil units in a watershed with wide variation in landscape conditions. The approach relied on a modelling of soil-forming factors in order to understand the variability of the landscape components in the region. Models were generated for landscape attributes related to pedogenesis, specifically elevation, slope, curvature, compound topographic index, Euclidean distance from stream networks, landforms map, clay minerals index, iron oxide index and normalised difference vegetation index, along with an existing geology map. The soil classification was adapted from the World Reference Base System for Soil Resources, and the predominant soil taxonomic orders observed were Ferrasols, Acrisols, Gleysols, Cambisols, Fluvisols and Regosols. The algorithms used to predict the soil units were based on decision tree (DT) and random forest (RF) methods. The criteria used to evaluate the models’ performance were statistical indices, coherence between predicted units and the legacy map, as well as accuracy checks based on control samples. The best performing model was found to be the RF algorithm, with resulting statistical indices considered excellent (overall=0.966, kappa=0.962). The accuracy of the map as determined by control points was 67.89%, with a kappa value of 61.39%.

[1]  R. J. Pike,et al.  Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature , 2007 .

[2]  T. Stepinski,et al.  Geomorphons — a pattern recognition approach to classification and mapping of landforms , 2013 .

[3]  Thorsten Behrens,et al.  Digital soil mapping using artificial neural networks , 2005 .

[4]  Friedrich Quiel,et al.  Geomorphometric feature analysis using morphometric parameterization and artificial neural networks , 2008 .

[5]  Elisabeth N. Bui,et al.  Spatial data mining for enhanced soil map modelling , 2002, Int. J. Geogr. Inf. Sci..

[6]  John C. Gallant,et al.  Derivation of terrain covariates for digital soil mapping in Australia , 2015 .

[7]  G. L'Abate,et al.  Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps , 2015 .

[8]  Tommy Dalgaard,et al.  Spatial soil zinc content distribution from terrain parameters: a GIS-based decision-tree model in Lebanon. , 2010, Environmental pollution.

[9]  Elvio Giasson,et al.  Decision trees for digital soil mapping on subtropical basaltic steeplands , 2011 .

[10]  James W. Merchant,et al.  An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, U.S.A. , 1997 .

[11]  César da Silva Chagas,et al.  Integração de dados do quickbird e atributos do terreno no mapeamento digital de solos por redes neurais artificiais , 2011 .

[12]  A. Salgado,et al.  Estudo da evolução da paisagem do quadrilátero ferrífero (Minas Gerais, Brasil) por meio da mensuração das taxas de erosão (10be) e da pedogênese , 2009 .

[13]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[14]  Avaliação de cinco algoritmos de árvores de decisão e três tipos de modelos digitais de elevação para mapeamento digital de solos a nível semidetalhado na Bacia do Lageado Grande, RS, Brasil , 2013 .

[15]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[16]  E. F. Filho,et al.  Comparison between artificial neural networks and maximum likelihood classification in digital soil mapping , 2013 .

[17]  Sabine Chabrillat,et al.  Imaging Spectrometry for Soil Applications , 2008 .

[18]  Múcio do Amaral Figueiredo,et al.  Alteração superficial e pedogeomorfologia no sul do Complexo Bação - Quadrilátero Ferrífero (MG) , 2004 .

[19]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[20]  S. R. M. Oliveira,et al.  Mineração de dados para inferência de relações solo-paisagem em mapeamentos digitais de solo , 2009 .

[21]  Michele Duarte de Menezes,et al.  Digital soil mapping approach based on fuzzy logic and field expert knowledge , 2013 .

[22]  Patrick Bogaert,et al.  Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran , 2014 .

[23]  John Triantafilis,et al.  Predicting and mapping of soil particle‐size fractions with adaptive neuro‐fuzzy inference and ant colony optimization in central Iran , 2016 .

[24]  H. Elsenbeer,et al.  Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis , 2008 .

[25]  Michele Duarte de Menezes,et al.  A Technique for Low Cost Soil Mapping and Validation Using Expert Knowledge on a Watershed in Minas Gerais, Brazil , 2014 .

[26]  Budiman Minasny,et al.  On digital soil mapping , 2003 .

[27]  João Bertoldo de Oliveira,et al.  Levantamento pedológico detalhado da estação experimental de Ribeirão Preto, SP , 1975 .

[28]  Carlos Antonio Oliveira Vieira,et al.  Digital soilscape mapping of tropical hillslope areas by neural networks , 2011 .

[29]  A-Xing Zhu,et al.  Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic , 2001 .

[30]  Waldir de Carvalho Junior,et al.  Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions , 2016 .

[31]  Budiman Minasny,et al.  A conditioned Latin hypercube method for sampling in the presence of ancillary information , 2006, Comput. Geosci..

[32]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[33]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[34]  N. McKenzie,et al.  Spatial prediction of soil properties using environmental correlation , 1999 .

[36]  I. Lepsch,et al.  Levantamento pedológico semidetalhado do município de Atibaia, SP , 1975 .

[37]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[38]  Lutz Breuer,et al.  Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia , 2013 .