Empirical Processes in M-Estimation

[1]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[2]  S. Geer M-estimation using penalties or sieves , 2002 .

[3]  V. Koltchinskii,et al.  Empirical margin distributions and bounding the generalization error of combined classifiers , 2002, math/0405343.

[4]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[5]  E. Mammen,et al.  Smooth Discrimination Analysis , 1999 .

[6]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[7]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[8]  Stephen Portnoy,et al.  Local asymptotics for quantile smoothing splines , 1997 .

[9]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[10]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[11]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[12]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[13]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[14]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[17]  P. Massart Some applications of concentration inequalities to statistics , 2000 .

[18]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[19]  A. Tsybakov,et al.  Wavelets, approximation, and statistical applications , 1998 .

[20]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[21]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[22]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[23]  D. E. Edmunds,et al.  Entropy Numbers and Approximation Numbers in Function Spacess , 1989 .

[24]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[25]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .