On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel

We discuss the limitations to the use of the effective field theory approach to study dark matter at the LHC. We introduce and study a few quantities, some of them independent of the ultraviolet completion of the dark matter theory, which quantify the error made when using effective operators to describe processes with very high momentum transfer. Our criteria indicate up to what cutoff energy scale, and with what precision, the effective description is valid, depending on the dark matter mass and couplings.

[1]  Edward W. Kolb,et al.  Maverick dark matter at colliders , 2010, 1002.4137.

[2]  V. M. Ghete,et al.  Search for new physics with a monojet and missing transverse energy in pp collisions at √s = 7 TeV. , 2011, Physical review letters.

[3]  B. Gomber,et al.  Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy , 2012, 1301.2673.

[4]  Maxim Perelstein,et al.  Dark matter search at a linear collider: effective operator approach , 2012, 1211.4008.

[5]  Jamie Tattersall,et al.  Contact interactions probe effective dark-matter models at the LHC , 2013, 1303.3348.

[6]  T. Tait,et al.  LHC bounds on interactions of dark matter , 2011, 1108.1196.

[7]  V. Sanz,et al.  Pseudo-Dirac dark matter leaves a trace. , 2010, Physical review letters.

[8]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[9]  M. P. Le,et al.  Bounds on dark matter interactions with electroweak gauge bosons , 2012, 1210.0525.

[10]  A. R. Bazer-Bachi,et al.  Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S. , 2011, Physical review letters.

[11]  A. Martin,et al.  Parton distributions for the LHC , 2009, 0901.0002.

[12]  K. Cheung,et al.  Cosmic Antiproton Constraints on Effective Interactions of the Dark Matter , 2010, 1011.2310.

[13]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[14]  A. A. Ocampo Rios,et al.  Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy , 2012, 1204.0821.

[15]  J. Berger,et al.  Fermion portal dark matter , 2013, 1308.0612.

[16]  Chong-Sheng Li,et al.  Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC , 2009, 0912.4511.

[17]  P. Fox,et al.  LEP Shines Light on Dark Matter , 2011, 1103.0240.

[18]  Patrick J. Fox,et al.  Taking a Razor to Dark Matter Parameter Space at the LHC , 2012, 1203.1662.

[19]  Xiao-Jun Bi,et al.  Constraining the interaction strength between dark matter and visible matter: I. Fermionic dark matter , 2010, 1012.2022.

[20]  Pavel Strachota,et al.  Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at √s=7 TeV with the ATLAS detector , 2013 .

[21]  F. Kahlhoefer,et al.  The impact of heavy-quark loops on LHC dark-matter searches , 2012, 1208.4605.

[22]  Patrick J. Fox,et al.  Missing Energy Signatures of Dark Matter at the LHC , 2011, 1109.4398.

[23]  Hai-Bo Yu,et al.  Constraints on Light Majorana dark Matter from Colliders , 2010, 1005.1286.

[24]  J. Chiang,et al.  Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope , 2013, 1310.0828.

[25]  M. Cirelli Indirect searches for dark matter , 2012, 1202.1454.

[26]  Herbert Dreiner,et al.  Illuminating dark matter at the ILC , 2012, 1211.2254.

[27]  T. Tait,et al.  Constraints on dark matter from colliders , 2010, 1008.1783.

[28]  D O Caldwell,et al.  Silicon detector dark matter results from the final exposure of CDMS II. , 2013, Physical review letters.

[29]  L. Krauss,et al.  Searching for Dark Matter at the LHC with a Mono-Z , 2012, 1209.0231.

[30]  J. Huston,et al.  The PDF4LHC Working Group Interim Report , 2011, 1101.0536.

[31]  A. Simone,et al.  Benchmarks for dark matter searches at the LHC , 2014, 1402.6287.

[32]  T. Tait,et al.  Simplified models for dark matter interacting with quarks , 2013, 1308.2679.

[33]  Patrick J. Fox,et al.  The Tevatron at the frontier of dark matter direct detection , 2010, 1005.3797.

[34]  L. Vecchi,et al.  Unitarity and Monojet Bounds on Models for DAMA, CoGeNT, and CRESST-II , 2011, 1112.5457.

[35]  T. Tait,et al.  Searches with mono-leptons , 2012, 1208.4361.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  H. S. Miley,et al.  CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors , 2012, 1208.5737.

[38]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[39]  Matthew J. Dolan,et al.  Beyond effective field theory for dark matter searches at the LHC , 2013, 1308.6799.

[40]  E. Kolb,et al.  Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach , 2013, 1305.0021.

[41]  Lian-tao Wang,et al.  Dark matter with t -channel mediator: A simple step beyond contact interaction , 2013, 1308.0592.

[42]  K. Cheung,et al.  Gamma-ray constraints on effective interactions of the dark matter , 2011, 1104.5329.

[43]  T. Tait,et al.  Gamma ray line constraints on effective theories of dark matter , 2010, 1009.0008.

[44]  P. Fox,et al.  Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders , 2012, 1211.6390.

[45]  Spencer Chang,et al.  Effective WIMPs , 2013, 1307.8120.

[46]  P. Catastini,et al.  Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector , 2012, Journal of High Energy Physics.

[47]  Dao-Xin Yao,et al.  Constraining the interaction strength between dark matter and visible matter: II. Scalar, vector and spin-3/2 dark matter , 2011, 1112.6052.

[48]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[49]  Yang Bai,et al.  Dark Matter Jets at the LHC , 2011, 1109.6009.

[50]  N. Bell,et al.  W / Z bremsstrahlung as the dominant annihilation channel for dark matter , 2010, 1009.2584.

[51]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[52]  A. Ibarra,et al.  Majorana dark matter with a coloured mediator: collider vs direct and indirect searches , 2014, 1403.4634.

[53]  A. Simone,et al.  On the effective operators for Dark Matter annihilations , 2013, 1301.1486.

[54]  Wick Haxton,et al.  The Effective Field Theory of Dark Matter Direct Detection , 2012, 1203.3542.

[55]  JiJi Fan,et al.  Non-relativistic effective theory of dark matter direct detection , 2010, 1008.1591.

[56]  L. Baudis Direct dark matter detection: the next decade , 2012, 1211.7222.

[57]  On the validity of the effective field theory for dark matter searches at the LHC , 2014, 1409.6668.