Numerical modeling of quasitransient backward Raman amplification of laser pulses in moderately undercritical plasmas with multicharged ions

It was proposed recently that powerful optical laser pulses could be efficiently compressed through backward Raman amplification in ionized low density solids, in spite of strong damping of the resonant Langmuir wave. It was argued that, even for nonsaturated Landau damping of the Langmuir wave, the energy transfer from the pump laser pulse to the amplified seed laser pulse can nevertheless be highly efficient. This work numerically examines such regimes of strong damping, called quasitransient regimes, within the simplest model that takes into account the major effects. The simulations indicate that compression of powerful optical laser pulses in ionized low density solids indeed can be highly efficient.

[1]  Nikolai Yampolsky,et al.  Limiting effects on laser compression by resonant backward Raman scattering in modern experiments , 2011 .

[2]  Peter A. Norreys,et al.  Simulations of efficient Raman amplification into the multipetawatt regime , 2010 .

[3]  N. Fisch,et al.  Quasitransient backward Raman amplification of powerful laser pulses in dense plasmas with multicharged ions , 2010 .

[4]  R. Kirkwood,et al.  Particle-in-cell simulations of kinetic effects in plasma-based backward Raman amplification in underdense plasmas , 2010 .

[5]  S. Moon,et al.  Backward Raman compression of x-rays in metals and warm dense matters , 2010, 1002.1735.

[6]  A. Balakin,et al.  Self-action of few-cycle pulses in a dispersive medium , 2009 .

[7]  Szymon Suckewer,et al.  Demonstration of detuning and wavebreaking effects on Raman amplification efficiency in plasma , 2008 .

[8]  N. Fisch,et al.  Quasitransient regimes of backward Raman amplification of intense x-ray pulses. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  N. Fisch,et al.  Relic crystal-lattice effects on Raman compression of powerful x-ray pulses in plasmas. , 2007, Physical review letters.

[10]  Szymon Suckewer,et al.  A compact double-pass Raman backscattering amplifier/compressora) , 2007 .

[11]  N. Fisch,et al.  Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  H. Suk,et al.  Effects of the frequency detuning in Raman backscattering of infinitely long laser pulses in plasmas , 2006 .

[13]  N. Fisch,et al.  Backward Raman amplification in a partially ionized gas. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  N. Fisch,et al.  Manipulating ultraintense laser pulses in plasmas , 2005 .

[15]  S. Suckewer,et al.  Reaching nonlinear regime in Raman amplification of ultrashort laser pulses , 2005, 2005 Quantum Electronics and Laser Science Conference.

[16]  Szymon Suckewer,et al.  Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. , 2004, Physical review letters.

[17]  N. Fisch,et al.  Inverse bremsstrahlung stabilization of noise in the generation of ultrashort intense pulses by backward Raman amplification , 2004 .

[18]  N. Fisch,et al.  Simulations of Raman laser amplification in ionizing plasmas , 2003 .

[19]  D. Clark,et al.  Raman laser amplification in preformed and ionizing plasmas , 2003 .

[20]  N. Fisch,et al.  Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump , 2003 .

[21]  Vladimir M. Malkin,et al.  Generation of ultrahigh intensity laser pulses , 2003 .

[22]  N. Fisch,et al.  Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma , 2003 .

[23]  N. Fisch,et al.  Random density inhomogeneities and focusability of the output pulses for plasma-based powerful backward Raman amplifiers , 2003 .

[24]  N. Fisch,et al.  Robustness of laser phase fronts in backward Raman amplifiers , 2002 .

[25]  N. Fisch,et al.  Intense laser pulse amplification using Raman backscatter in plasma channels , 2002 .

[26]  C. Capjack,et al.  Enhanced inverse bremsstrahlung heating rates in a strong laser field , 2002, physics/0203030.

[27]  A. Balakin,et al.  Coherent effects of ion–electron collisions in a strong laser field , 2001 .

[28]  Gennady Shvets,et al.  Ultra-powerful compact amplifiers for short laser pulses , 2000 .

[29]  N. Fisch,et al.  Detuned raman amplification of short laser pulses in plasma , 2000, Physical review letters.

[30]  M. H. Key,et al.  The Physics of Laser Plasma Interactions , 1989 .

[31]  W L Kruer,et al.  Long Pulse Laser-Plasma Interactions , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[32]  Edward Ott,et al.  Self‐focusing of short intense pulses in plasmas , 1987 .

[33]  A. Bruce Langdon,et al.  Self-Modulation and Self-Focusing of Electromagnetic Waves in Plasmas , 1974 .

[34]  Gennady Shvets,et al.  FAST COMPRESSION OF LASER BEAMS TO HIGHLY OVERCRITICAL POWERS , 1999 .

[35]  M. Bachynski,et al.  The Particle Kinetics of Plasmas , 1966 .

[36]  D. Staack,et al.  Studies of Non-conventional Configuration Closed Electron Drift Thrusters , 2001 .