Mixed integer second-order cone programming formulations for variable selection in linear regression
暂无分享,去创建一个
[1] Chih-Ling Tsai,et al. Regression model selection—a residual likelihood approach , 2002 .
[2] Toshiki Sato,et al. Feature subset selection for logistic regression via mixed integer optimization , 2016, Computational Optimization and Applications.
[3] Hande Y. Benson,et al. Mixed-Integer Second-Order Cone Programming: A Survey , 2013 .
[4] R. R. Hocking. The analysis and selection of variables in linear regression , 1976 .
[5] Chenlei Leng,et al. The Residual Information Criterion, Corrected , 2007, 0711.1918.
[6] Erricos John Kontoghiorghes,et al. A branch and bound algorithm for computing the best subset regression models , 2002 .
[7] S. Leyffer,et al. Comparison of certain MINLP algorithms when applied to a model structure determination and parameter estimation problem , 1998 .
[8] Stefan Emet. A Model Identification Approach Using MINLP Techniques , 2006 .
[9] Marc Hofmann,et al. Efficient algorithms for computing the best subset regression models for large-scale problems , 2007, Comput. Stat. Data Anal..
[10] Hiroshi Konno,et al. Multi-step methods for choosing the best set of variables in regression analysis , 2010, Comput. Optim. Appl..
[11] Abhimanyu Das,et al. Algorithms for subset selection in linear regression , 2008, STOC.
[12] Hiroshi Motoda,et al. Book Review: Computational Methods of Feature Selection , 2007, The IEEE intelligent informatics bulletin.
[13] Alan J. Miller. Subset Selection in Regression , 1992 .
[14] N. Sugiura. Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .
[15] Isabelle Guyon,et al. An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..
[16] R. Wherry,et al. A New Formula for Predicting the Shrinkage of the Coefficient of Multiple Correlation , 1931 .
[17] Yadolah Dodge,et al. Mathematical Programming In Statistics , 1981 .
[18] Donald Goldfarb,et al. Second-order cone programming , 2003, Math. Program..
[19] B. G. Quinn,et al. The determination of the order of an autoregression , 1979 .
[20] Alexander J. Smola,et al. Second Order Cone Programming Approaches for Handling Missing and Uncertain Data , 2006, J. Mach. Learn. Res..
[21] Ryuhei Miyashiro,et al. Subset selection by Mallows' C p , 2015 .
[22] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[23] Theodore B. Trafalis,et al. Robust classification and regression using support vector machines , 2006, Eur. J. Oper. Res..
[24] Abhimanyu Das,et al. Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection , 2011, ICML.
[25] Pat Langley,et al. Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..
[26] H. Theil,et al. Economic Forecasts and Policy. , 1959 .
[27] Dimitris Bertsimas,et al. Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..
[28] Hiroshi Konno,et al. Choosing the best set of variables in regression analysis using integer programming , 2009, J. Glob. Optim..
[29] H. Theil,et al. Economic Forecasts and Policy. , 1959 .
[30] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[31] David R. Anderson,et al. Model selection and multimodel inference : a practical information-theoretic approach , 2003 .
[32] Robert W. Wilson,et al. Regressions by Leaps and Bounds , 2000, Technometrics.
[33] R. Stolzenberg,et al. Multiple Regression Analysis , 2004 .
[34] H. Akaike. A new look at the statistical model identification , 1974 .
[35] D. Bertsimas,et al. Best Subset Selection via a Modern Optimization Lens , 2015, 1507.03133.
[36] Venkat Reddy Konasani,et al. Multiple Regression Analysis , 2015 .
[37] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[38] Ryuhei Miyashiro,et al. Subset selection by Mallows' Cp: A mixed integer programming approach , 2015, Expert Syst. Appl..
[39] Robert P Freckleton,et al. Why do we still use stepwise modelling in ecology and behaviour? , 2006, The Journal of animal ecology.
[40] Masakazu Muramatsu,et al. An Efficient Support Vector Machine Learning Method with Second-Order Cone Programming for Large-Scale Problems , 2005, Applied Intelligence.
[41] Lisa Turner,et al. Applications of Second Order Cone Programming , 2012 .
[42] Hiroshi Motoda,et al. Computational Methods of Feature Selection , 2022 .
[43] M. Yuan,et al. Dimension reduction and coefficient estimation in multivariate linear regression , 2007 .
[44] Ron Kohavi,et al. Wrappers for Feature Subset Selection , 1997, Artif. Intell..
[45] Jacob Zahavi,et al. Using simulated annealing to optimize the feature selection problem in marketing applications , 2006, Eur. J. Oper. Res..
[46] A. Atkinson. Subset Selection in Regression , 1992 .