Context Integration for Mobile Data Tailoring

Independent, heterogeneous, distributed, sometimes transient and mobile data sources produce an enormous amount of information that should be semantically integrated and filtered, or, as we say, tailored, based on the user’s interests and context. Since both the user and the data sources can be mobile, and the communication might be unreliable, caching the information on the user device may become really useful. Therefore new challenges have to be faced such as: data filtering in a context-aware fashion, integration of not-known-in-advance data sources, automatic extraction of the semantics. We propose a novel system named Context-ADDICT (Context-Aware Data Design, Integration, Customization and Tailoring) able to deal with the described scenario. The system we are designing aims at tailoring the available information to the needs of the current user in the current context, in order to offer a more manageable amount of information; such information is to be cached on the user’s device according to policies defined at design-time, to cope with data source transiency. This paper focuses on the information representation and tailoring problem and on the definition of the global architecture of the system.

[1]  Tiziana Catarci,et al.  Multi-channel Adaptive Information Systems , 2007, World Wide Web.

[2]  Balakrishnan Chandrasekaran,et al.  What are ontologies, and why do we need them? , 1999, IEEE Intell. Syst..

[3]  Vipul Kashyap,et al.  Observer: an approach for query processing in global information systems based on interoperation across pre-existing ontologies , 1996, Proceedings First IFCIS International Conference on Cooperative Information Systems.

[4]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[5]  Tao Gu,et al.  A service-oriented middleware for building context-aware services , 2005, J. Netw. Comput. Appl..

[6]  Panos K. Chrysanthis,et al.  Proceedings of the 6th international conference on Mobile data management , 2003 .

[7]  Guanling Chen,et al.  A Survey of Context-Aware Mobile Computing Research , 2000 .

[8]  P. Sreenivasa Kumar,et al.  ERONTO: a tool for extracting ontologies from extended E/R diagrams , 2005, SAC '05.

[9]  Letizia Tanca,et al.  Requirements for Context-Dependent Mobile Access to Information Services , 2004, Multimedia Information Systems.

[10]  Letizia Tanca,et al.  A context-aware methodology for very small data base design , 2004, SGMD.

[11]  Deborah L. McGuinness,et al.  The Chimaera Ontology Environment , 2000, AAAI/IAAI.

[12]  Vipul Kashyap,et al.  OBSERVER: An Approach for Query Processing in Global Information Systems Based on Interoperation Across Pre-Existing Ontologies , 2000, Distributed and Parallel Databases.

[13]  Diego Calvanese,et al.  Unifying Class-Based Representation Formalisms , 2011, J. Artif. Intell. Res..

[14]  Wolfgang Faber,et al.  Boosting Information Integration: The INFOMIX System , 2005, SEBD.

[15]  Bodo Rieger,et al.  Semantic Integration of Heterogeneous Information Sources , 2000, EFIS.

[16]  Manasawee Kaenampornpan,et al.  An integrated context model: bringing activity to context , 2004 .

[17]  Marian H. Nodine,et al.  Active Information Gathering in InfoSleuth , 1999, CODAS.

[18]  Carlo Curino,et al.  PoLiDBMS: Design and Prototype Implementation of a DBMS for Portable Devices , 2004, SEBD.

[19]  Steffen Staab,et al.  QOM - Quick Ontology Mapping , 2004, GI Jahrestagung.

[20]  Jos de Bruijn,et al.  D4.2.1 State-of-the-art survey on Ontology Merging and Aligning V1 , 2004 .

[21]  Matthias Baldauf,et al.  A survey on context-aware systems , 2007, Int. J. Ad Hoc Ubiquitous Comput..

[22]  Martin L. Kersten,et al.  A Graph-Oriented Model for Articulation of Ontology Interdependencies , 1999, EDBT.

[23]  Donald Kossmann,et al.  The state of the art in distributed query processing , 2000, CSUR.

[24]  Stefan Conrad,et al.  Relational.OWL - A Data and Schema Representation Format Based on OWL , 2005, APCCM.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Letizia Tanca,et al.  Logical and physical design issues for smart card databases , 2003, TOIS.

[27]  Zoubir Mammeri,et al.  Query processing in mobile environments: a survey and open problems , 2005, First International Conference on Distributed Frameworks for Multimedia Applications.

[28]  Claudia Linnhoff-Popien,et al.  A Context Modeling Survey , 2004 .

[29]  Pedro M. Domingos,et al.  Ontology Matching: A Machine Learning Approach , 2004, Handbook on Ontologies.

[30]  Mark A. Musen,et al.  The PROMPT suite: interactive tools for ontology merging and mapping , 2003, Int. J. Hum. Comput. Stud..

[31]  Yisheng Dong,et al.  Formal Approach and Automated Tool for Translating ER Schemata into OWL Ontologies , 2004, PAKDD.

[32]  Letizia Tanca,et al.  A methodology for a Very Small Data Base design , 2007, Inf. Syst..

[33]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .