Dynamic response of a long span suspension bridge and running safety of a train under wind action

A dynamic analysis model of a wind-train-bridge system is established. The wind excitations of the system are the buffeting and self-excited forces simulated in time domain using measured aerodynamic coefficients and flutter derivatives. The proposed formulations are then applied to a long rail-cum-road suspension bridge. The dynamic responses of the bridge and the train under wind action are analyzed. The results show that the lateral and rotational displacements of the bridge are dominated by wind, while the vertical by the gravity loading of the moving train. The running safeties of the train vehicles are much affected by wind. Under wind conditions of 30–40 m/s, the offload factors, derail factors and overturn factors of the train vehicles exceed the safety allowances, to which great attention should be paid.