Thermomechanics of shells undergoing phase transition

The resultant, two-dimensional thermomechanics of shells undergoing diffusionless, displacive phase transitions of martensitic type of the shell material is developed. In particular, we extend the resultant surface entropy inequality by introducing two temperature fields on the shell base surface: the referential mean temperature and its deviation, with corresponding dual fields: the referential entropy and its deviation. Additionally, several extra surface fields related to the deviation fields are introduced to assure that the resultant surface entropy inequality be direct implication of the entropy inequality of continuum thermomechanics. The corresponding constitutive equations for thermoelastic and thermoviscoelastic shells of differential type are worked out. Within this formulation of shell thermomechanics, we also derive the thermodynamic continuity condition along the curvilinear phase interface and propose the kinetic equation allowing one to determine position and quasistatic motion of the interface relative to the base surface. The theoretical model is illustrated by two axisymmetric numerical examples of stretching and bending of the circular plate undergoing phase transition within the range of small deformations.

[1]  Y. Shu,et al.  Heterogeneous Thin Films of Martensitic Materials , 2000 .

[2]  P. Steinmann,et al.  On material interfaces in thermomechanical solids , 2005 .

[3]  S. Stupkiewicz,et al.  Interfacial energy and dissipation in martensitic phase transformations. Part II: Size effects in pseudoelasticity , 2010 .

[4]  Victor A. Eremeyev,et al.  Phase transitions in thermoelastic and thermoviscoelastic shells , 2008 .

[5]  A. DeSimone,et al.  Tents and tunnels on martensitic films , 1999 .

[6]  Hilbert,et al.  Methods of Mathematical Physics, vol. II. Partial Differential Equations , 1963 .

[7]  James G. Simmonds A Simple Nonlinear Thermodynamic Theory of Arbitrary Elastic Beams , 2005 .

[8]  A. Freidin,et al.  Spherically symmetric two-phase deformations and phase transition zones , 2006 .

[9]  P. M. Naghdi,et al.  Non-isothermal theory of rods, plates and shells , 1970 .

[10]  S. Miyazaki,et al.  High-strength superelastic Ti–Ni microtubes fabricated by sputter deposition , 2008 .

[11]  P. Feng,et al.  In situ profilometry for non-uniform strain field measurement of NiTi shape memory alloy microtubing under complex stress states , 2007 .

[12]  Z. Q. Li,et al.  The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension , 2002 .

[13]  A. Murdoch On the entropy inequality for material interfaces , 1976 .

[14]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[15]  R. James,et al.  A theory of thin films of martensitic materials with applications to microactuators , 1999 .

[16]  D. Steigmann,et al.  Coexistent Fluid-Phase Equilibria in Biomembranes with Bending Elasticity , 2008 .

[17]  C. Keller Geochemical Thermodynamics, 2nd Edition , 1995 .

[18]  The Nonlinear Thermodynamical Theory of Shells: Descent from 3-Dimensions without Thickness Expansions , 1984 .

[19]  Hisaaki Tobushi,et al.  Characteristics of energy storage and dissipation in TiNi shape memory alloy , 2005 .

[20]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[21]  Gérard A. Maugin,et al.  Numerical Simulation of Waves and Fronts in Inhomogeneous Solids , 2008 .

[22]  P. Vacher,et al.  Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at% Ni thin tube under tension. Investigation via temperature and strain fields measurements , 2007 .

[23]  P. Feng,et al.  Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force , 2006 .

[24]  Tongxi Yu,et al.  Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips , 2010 .

[25]  Richard D. James,et al.  The Material Is the Machine , 2005, Science.

[26]  Kengo Hashimoto,et al.  Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube , 2003 .

[27]  A. I. Murdoch,et al.  A THERMODYNAMICAL THEORY OF ELASTIC MATERIAL INTERFACES , 1976 .

[28]  H. Tobushi,et al.  Torsional deformation and rotary driving characteristics of SMA thin strip , 2009 .

[29]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[30]  J. G. Simmonds,et al.  The Nonlinear Theory of Elastic Shells , 1998 .

[31]  Wojciech Pietraszkiewicz,et al.  The Nonlinear Theory of Elastic Shells with Phase Transitions , 2004 .

[32]  M. Rubin Restrictions on linear constitutive equations for a rigid heat conducting Cosserat shell , 2004 .

[33]  G. Maugin On shock waves and phase-transition fronts in continua , 1998 .

[34]  W. Pietraszkiewicz,et al.  Local Symmetry Group in the General Theory of Elastic Shells , 2006 .

[35]  James K. Knowles,et al.  Evolution of Phase Transitions: A Continuum Theory , 2006 .

[36]  M. Gurtin Thermomechanics of Evolving Phase Boundaries in the Plane , 1993 .

[37]  Hisaaki Tobushi,et al.  Phase-Transformation Fronts Evolution for Stress- and Strain-Controlled Tension Tests in TiNi Shape Memory Alloy , 2006 .

[38]  G. Herrmann,et al.  Mechanics in Material Space: with Applications to Defect and Fracture Mechanics , 2012 .

[39]  M. J. Grinfel'd,et al.  Thermodynamic methods in the theory of heterogeneous systems , 1991 .

[40]  J. G. Simmonds,et al.  Nonlinear Elastic Shell Theory , 1983 .

[41]  Pavel A. Zhilin,et al.  Mechanics of deformable directed surfaces , 1976 .

[42]  A. Boulbitch Equations of heterophase equilibrium of a biomembrane , 1999 .

[43]  Yongjun He,et al.  Rate-dependent domain spacing in a stretched NiTi strip , 2010 .

[44]  Yi-Chung Shu,et al.  Shape-Memory Micropumps , 2002 .

[45]  A. Green,et al.  On thermal effects in the theory of shells , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[47]  Wolfgang Muschik,et al.  A sketch of continuum thermodynamics , 2001 .

[48]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[49]  Richard D. James,et al.  Martensitic transformations and shape-memory materials ☆ , 2000 .

[50]  Ze Zhang,et al.  EBSD studies of the stress-induced B2–B19′ martensitic transformation in NiTi tubes under uniaxial tension and compression , 2010 .

[51]  Charles M. Elliott,et al.  A Surface Phase Field Model for Two-Phase Biological Membranes , 2010, SIAM J. Appl. Math..

[52]  F. Fischer Moving Interfaces in Crystalline Solids , 2005 .

[53]  Y. He,et al.  Effects of structural and material length scales on stress-induced martensite macro-domain patterns in tube configurations , 2009 .

[54]  H. Tobushi,et al.  Thermomechanical properties of shape memory polymer subjected to tension in various conditions , 2009 .

[55]  Christian Lexcellent,et al.  Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape memory alloys , 2002 .

[56]  S. Stupkiewicz,et al.  Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory , 2010 .

[57]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[58]  M. De Handbuch der Physik , 1957 .

[59]  A. Freidin,et al.  The stability of the equilibrium of two-phase elastic solids , 2007 .

[60]  M. Rubin Heat conduction between confocal elliptical surfaces using the theory of a Cosserat shell , 2006 .

[61]  Qingping Sun,et al.  Scaling relationship on macroscopic helical domains in NiTi tubes , 2009 .

[62]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[63]  E. Pieczyska Activity of stress-induced martensite transformation in TiNi shape memory alloy studied by infrared technique , 2010 .

[64]  J. R. Moon,et al.  Tensile and compression performance of superelastic NiTi tubing , 2001 .

[65]  R. C. Benson,et al.  Flexible Shells: Theory and Applications , 1984 .

[66]  K. Hane Bulk and thin film microstructures in untwinned martensites , 1999 .

[67]  Prace Ippt MICROMECHANICS OF CONTACT AND INTERPHASE LAYERS , 2005 .

[68]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[69]  Clifford Ambrose Truesdell,et al.  The elements of continuum mechanics , 1965 .

[70]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[71]  Laurent Orgéas,et al.  Image Processing to Estimate the Heat Sources Related to Phase Transformations during Tensile Tests of NiTi Tubes , 2007 .

[72]  S. Miyazaki,et al.  Thin Film Shape Memory Alloys: Fundamentals and Device Applications , 2009 .

[73]  Victor A. Eremeyev,et al.  Extended non‐linear relations of elastic shells undergoing phase transitions , 2007 .

[74]  G. Ravichandran,et al.  Stress-induced martensitic phase transformation in thin sheets of Nitinol , 2007 .

[75]  Zhiqiang Li,et al.  Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion––from localization to homogeneous deformation , 2002 .

[76]  W. Muschik Survey of Some Branches of Thermodynamics , 2008 .

[77]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[78]  Pressurized Shape Memory Thin Films , 2000 .

[79]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[80]  K. L. Ng,et al.  Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes , 2006 .

[81]  Superelastic Deformation Behaviors Based on Phase Transformation Bands in TiNi Shape Memory Alloy , 2006 .

[82]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[83]  Y. He,et al.  Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates , 2010 .

[84]  Jian Wang,et al.  Experimental and numerical study of the superelastic behaviour on NiTi thin-walled tube under biaxial loading , 2007 .

[85]  W. Pietraszkiewicz,et al.  Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells , 2007 .