Orbital Edge Computing: Nanosatellite Constellations as a New Class of Computer System

Advances in nanosatellite technology and a declining cost of access to space have fostered an emergence of large constellations of sensor-equipped satellites in low-Earth orbit. Many of these satellite systems operate under a "bent-pipe" architecture, in which ground stations send commands to orbit and satellites reply with raw data. In this work, we observe that a bent-pipe architecture for Earth-observing satellites breaks down as constellation population increases. Communication is limited by the physical configuration and constraints of the system over time, such as ground station location, nanosatellite antenna size, and energy harvested on orbit. We show quantitatively that nanosatellite constellation capabilities are determined by physical system constraints. We propose an Orbital Edge Computing (OEC) architecture to address the limitations of a bent-pipe architecture. OEC supports edge computing at each camera-equipped nanosatellite so that sensed data may be processed locally when downlinking is not possible. In order to address edge processing latencies, OEC systems organize satellite constellations into computational pipelines. These pipelines parallelize both data collection and data processing based on geographic location and without the need for cross-link coordination. OEC satellites explicitly model constraints of the physical environment via a runtime service. This service uses orbit parameters, physical models, and ground station positions to trigger data collection, predict energy availability, and prepare for communication. We show that an OEC architecture can reduce ground infrastructure over 24x compared to a bent-pipe architecture, and we show that pipelines can reduce system edge processing latency over 617x.

[1]  Jacob Sorber,et al.  Flicker: Rapid Prototyping for the Batteryless Internet-of-Things , 2017, SenSys.

[2]  T. Vincenty DIRECT AND INVERSE SOLUTIONS OF GEODESICS ON THE ELLIPSOID WITH APPLICATION OF NESTED EQUATIONS , 1975 .

[3]  Vivek Vittaldev,et al.  Dove High Speed Downlink System , 2017 .

[4]  Zhuo Chen,et al.  Edge Analytics in the Internet of Things , 2015, IEEE Pervasive Computing.

[5]  Brandon Lucia,et al.  Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems , 2018, ASPLOS.

[6]  Atri Dutta,et al.  An Overview of Cube-Satellite Propulsion Technologies and Trends , 2017 .

[7]  Joshua D. Griffin,et al.  MakerSat-0: 3D-Printed Polymer Degradation First Data from Orbit , 2018 .

[8]  Adam Van Etten,et al.  SpaceNet: A Remote Sensing Dataset and Challenge Series , 2018, ArXiv.

[9]  Li Chen,et al.  Single event upset characterization of the Tegra K1 mobile processor using proton irradiation , 2017, 2017 IEEE Radiation Effects Data Workshop (REDW).

[10]  Thomas O. Seppelin,et al.  The Department of Defense World Geodetic System 1972 , 1974 .

[11]  Matthew Hicks,et al.  Clank: Architectural support for intermittent computation , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[12]  Lawrence Ong,et al.  The Earth Observing One (EO-1) Satellite Mission: Over a Decade in Space , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Henry F. Fliegel,et al.  Letters to the editor: a machine algorithm for processing calendar dates , 1968, CACM.

[14]  P. K. Seidelmann,et al.  The new definition of universal time , 1982 .

[15]  Mahmut T. Kandemir,et al.  Incidental Computing on IoT Nonvolatile Processors , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[16]  Trevor N. Mudge,et al.  Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge , 2017, ASPLOS.

[17]  Ashish Kapoor,et al.  AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles , 2017, FSR.

[18]  T. S. Kelso Models for Propagation of NORAD Element Sets , 1980 .

[19]  Brandon Lucia,et al.  Orbital Edge Computing: Machine Inference in Space , 2019, IEEE Computer Architecture Letters.

[20]  Michael Hamburg,et al.  Meltdown: Reading Kernel Memory from User Space , 2018, USENIX Security Symposium.

[21]  Howard D. Curtis,et al.  Orbital Mechanics for Engineering Students , 2005 .

[22]  Suren Jayasuriya,et al.  EVA²: Exploiting Temporal Redundancy in Live Computer Vision , 2018, 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[23]  Arnab Raha,et al.  QuickRecall , 2015, ACM J. Emerg. Technol. Comput. Syst..

[24]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[25]  W. L. Flock,et al.  Propagation Effects on Satellite Systems at Frequencies Below 10 GHz , 1983 .

[26]  Steven R. Jefferts,et al.  Time: From Earth Rotation to Atomic Physics , 2010 .

[27]  Agisilaos G. Zisimatos,et al.  Overview of the Satellite Networked Open Ground Stations (SatNOGS) Project , 2018 .

[28]  Michel Capderou,et al.  Satellites: Orbits and Missions , 2005 .

[29]  Matthew Hicks,et al.  Intermittent Computation without Hardware Support or Programmer Intervention , 2016, OSDI.

[30]  J. Puig-Suari,et al.  Development of the standard CubeSat deployer and a CubeSat class PicoSatellite , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[31]  Wenzhi Cui,et al.  MAVBench: Micro Aerial Vehicle Benchmarking , 2018, 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[32]  Brandon Lucia,et al.  Chain: tasks and channels for reliable intermittent programs , 2016, OOPSLA.

[33]  Chris Stormer,et al.  Explanatory Supplement to the Astronomical Almanac , 1995 .

[34]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[35]  Jie Liu,et al.  Pocket cloudlets , 2011, ASPLOS XVI.

[36]  Mahmut T. Kandemir,et al.  NEOFog: Nonvolatility-Exploiting Optimizations for Fog Computing , 2018, ASPLOS.

[37]  Jeroen Cappaert,et al.  Building, Deploying and Operating a Cubesat Constellation - Exploring the Less Obvious Reasons Space is Hard , 2018 .

[38]  Brandon Lucia,et al.  Adaptive Dynamic Checkpointing for Safe Efficient Intermittent Computing , 2018, OSDI.

[39]  Jacob Sorber,et al.  Timely Execution on Intermittently Powered Batteryless Sensors , 2017, SenSys.

[40]  Mark Harris,et al.  Tech giants race to build orbital internet [News] , 2018, IEEE Spectrum.

[41]  Michael Hamburg,et al.  Spectre Attacks: Exploiting Speculative Execution , 2018, 2019 IEEE Symposium on Security and Privacy (SP).

[42]  Saptarshi Bandyopadhyay,et al.  Review of Formation Flying and Constellation Missions Using Nanosatellites , 2016 .

[43]  Nael B. Abu-Ghazaleh,et al.  BranchScope: A New Side-Channel Attack on Directional Branch Predictor , 2018, ASPLOS.

[44]  Mahadev Satyanarayanan,et al.  The Emergence of Edge Computing , 2017, Computer.

[45]  Przemyslaw Pawelczak,et al.  InK: Reactive Kernel for Tiny Batteryless Sensors , 2018, SenSys.

[46]  L. Ippolito Radiowave Propagation in Satellite Communications , 1986 .

[47]  Luca Benini,et al.  Origami: A 803-GOp/s/W Convolutional Network Accelerator , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[48]  Luiz André Barroso,et al.  The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines , 2009, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines.

[49]  Yael Kovo,et al.  State of the Art of Small Spacecraft Technology , 2020 .

[50]  al e,et al.  Microsatellite and formation flying technologies on university nanosatellites , 1999 .

[51]  Tianshi Chen,et al.  ShiDianNao: Shifting vision processing closer to the sensor , 2015, 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).

[52]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[53]  Lauren Dreyer Latest developments on SpaceX's Falcon 1 and Falcon 9 launch vehicles and Dragon spacecraft , 2009, 2009 IEEE Aerospace conference.

[54]  Kristen C Castonguay Additive Manufacture of Propulsion Systems in Low Earth Orbit , 2018 .

[55]  Zhuo Chen,et al.  Bandwidth-Efficient Live Video Analytics for Drones Via Edge Computing , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[56]  Mahadev Satyanarayanan,et al.  Diamond: A Storage Architecture for Early Discard in Interactive Search , 2004, FAST.

[57]  Warren Frick,et al.  Small Launch Vehicles - A 2018 State of the Industry Report , 2018 .

[58]  Vassilis Kostopoulos,et al.  Design, Analysis, Optimization, Manufacturing, and Testing of a 2U Cubesat , 2018 .

[59]  Song Han,et al.  EIE: Efficient Inference Engine on Compressed Deep Neural Network , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[60]  Paramvir Bahl,et al.  Focus: Querying Large Video Datasets with Low Latency and Low Cost , 2018, OSDI.

[61]  K. M. Borkowski,et al.  Accurate algorithms to transform geocentric to geodetic coordinates , 1989 .

[62]  James Mason,et al.  Commissioning the World’s Largest Satellite Constellation , 2017 .

[63]  Hyosang Yoon,et al.  ADCS at Scale: Calibrating and Monitoring the Dove Constellation , 2018 .

[64]  Henry Martin,et al.  Bolstering Mission Success: Lessons Learned for Small Satellite Developers Adhering to Manned Spaceflight Requirements , 2018 .

[65]  Brandon Lucia,et al.  Alpaca: intermittent execution without checkpoints , 2017, Proc. ACM Program. Lang..

[66]  Angela Acocella,et al.  Blue Origin, NASA, and New Space (A) , 2016 .

[67]  Luiz André Barroso,et al.  The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second Edition , 2013, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second Edition.

[68]  Brandon Lucia,et al.  A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices , 2018, ASPLOS.

[69]  Brandon Lucia,et al.  A simpler, safer programming and execution model for intermittent systems , 2015, PLDI.