Biodegradable magnesium implants for orthopedic applications

The clinical application of degradable orthopedic magnesium implants is a tangible vision in medical science. This interdisciplinary review discusses many different aspects of magnesium alloys comprising the manufacturing process and the latest research. We present the challenges of the manufacturing process of magnesium implants with the risk of contamination with impurities and its effect on corrosion. Furthermore, this paper provides a summary of the current examination methods used in in vitro and in vivo research of magnesium alloys. The influence of various parameters (most importantly the effect of the corrosive media) in in vitro studies and an overview about the current in vivo research is given.

[1]  S. Hiromoto,et al.  High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution , 2009 .

[2]  B. Denkena,et al.  Influence of Different Surface Machining Treatments of Magnesium‐based Resorbable Implants on the Degradation Behavior in Rabbits , 2009 .

[3]  Andrea Meyer-Lindenberg,et al.  In Vivo Degradation Behavior of the Magnesium Alloy LANd442 in Rabbit Tibiae , 2011, Materials.

[4]  S. A. El-Rahman Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). , 2003, Pharmacological research.

[5]  J. Kruger,et al.  Corrosion of magnesium , 1993 .

[6]  G. Song Recent Progress in Corrosion and Protection of Magnesium Alloys , 2005 .

[7]  E. Zhang,et al.  Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application , 2009 .

[8]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[9]  P. Chu,et al.  Influence of Test Solutions on In Vitro Studies of Biomedical Magnesium Alloys , 2010 .

[10]  Janine Fischer,et al.  Improved cytotoxicity testing of magnesium materials , 2011 .

[11]  Tim B F Woodfield,et al.  Buffer-regulated biocorrosion of pure magnesium , 2012, Journal of Materials Science: Materials in Medicine.

[12]  Y. Wan,et al.  Preparation and characterization of a new biomedical magnesium–calcium alloy , 2008 .

[13]  Andrea Meyer-Lindenberg,et al.  Profound differences in the in‐vivo‐degradation and biocompatibility of two very similar rare‐earth containing Mg‐alloys in a rabbit model , 2010 .

[14]  O. Böstman,et al.  Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies. , 1992, The Journal of bone and joint surgery. American volume.

[15]  Zhao Liang Corrosion and protection of magnesium alloys , 2002 .

[16]  M. Leeflang,et al.  In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys , 2010, Journal of materials science. Materials in medicine.

[17]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[18]  Yao Jiang,et al.  Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants. , 2011, International journal of molecular medicine.

[19]  M. Wei,et al.  Corrosion process of pure magnesium in simulated body fluid , 2008 .

[20]  Andrea Meyer-Lindenberg,et al.  Comparison of the resorbable magnesium . alloys LAE442 und MgCa0.8 concerning their mechanical properties, their progress of degradation and the bone‐implant‐contact after 12 months implantation duration in a rabbit model , 2009 .

[21]  R. Siffert,et al.  Complications of Ender-pin fixation in basicervical, intertrochanteric, and subtrochanteric fractures of the hip. , 1983, The Journal of bone and joint surgery. American volume.

[22]  E. Willbold,et al.  Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. , 2007, Journal of biomedical materials research. Part A.

[23]  Min Ho Lee,et al.  Corrosion behavior and cytotoxicity of Mg-35Zn-3Ca alloy for surface modified biodegradable implant material. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[24]  Sannakaisa Virtanen,et al.  Biodegradable Mg and Mg alloys: Corrosion and biocompatibility , 2011 .

[25]  N E Saris,et al.  Magnesium. An update on physiological, clinical and analytical aspects. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[26]  Changsong Dai,et al.  Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid , 2009 .

[27]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[28]  W. Zhou,et al.  Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy , 2000 .

[29]  G. Song,et al.  The Effect of Pre‐Processing and Grain Structure on the Bio‐Corrosion and Fatigue Resistance of Magnesium Alloy AZ31 , 2007 .

[30]  G. Song,et al.  Corrosion mechanisms of magnesium alloys , 1999 .

[31]  R. Walter,et al.  In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid , 2011 .

[32]  O. Lunder,et al.  The Role of Mg17Al12 Phase in the Corrosion of Mg Alloy AZ91 , 1989 .

[33]  X. M. Zhang,et al.  In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin , 2010 .

[34]  L. J. Swartzendruber,et al.  The Fe−Mg (Iron-Magnesium) system , 1985 .

[35]  J. Nellesen,et al.  Cartilage repair on magnesium scaffolds used as a subchondral bone replacement , 2006 .

[36]  A. Hartwig,et al.  Role of magnesium in genomic stability. , 2001, Mutation research.

[37]  Frank Witte,et al.  Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. , 2010, Acta biomaterialia.

[38]  Raimund Erbel,et al.  Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. , 2009, JACC. Cardiovascular interventions.

[39]  B. Luan,et al.  Protective coatings on magnesium and its alloys — a critical review , 2002 .

[40]  C. Xie,et al.  In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy , 2009 .

[41]  H. C. Man,et al.  Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants , 2007 .

[42]  M. Kannan Influence of microstructure on the in-vitro degradation behaviour of magnesium alloys , 2010 .

[43]  E. F. Emley Principles of magnesium technology , 1966 .

[44]  Henning Windhagen,et al.  Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae , 2010, Journal of Materials Science.

[45]  J. Oestby PHYSICAL METALLURGY OF MAGNESIUM AND ITS ALLOYS , 1962 .

[46]  P. Chu,et al.  Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin , 2007 .

[47]  Henning Windhagen,et al.  In Vivo Corrosion of Two Novel Magnesium Alloys ZEK100 and AX30 and Their Mechanical Suitability as Biodegradable Implants , 2011, Materials.

[48]  J. Yue,et al.  In vivo study of degradable magnesium and magnesium alloy as bone implant , 2007 .

[49]  F. Beckmann,et al.  In vivo corrosion and corrosion protection of magnesium alloy LAE442. , 2010, Acta biomaterialia.

[50]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[51]  Wei Zhou,et al.  Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy , 2010 .

[52]  P. Chu,et al.  In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. , 2011, Acta biomaterialia.

[53]  H. Friedrich,et al.  Magnesium Technology - Metallurgy, Design Data, Applications , 2006 .

[54]  Andrej Atrens,et al.  Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0.2Mn in Hank’s solution at room temperature , 2011 .

[55]  R. Raman,et al.  In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. , 2008, Biomaterials.

[56]  M. Escudero,et al.  Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. , 2010, Acta biomaterialia.

[57]  E. Willbold,et al.  Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling. , 2007, Journal of biomedical materials research. Part A.

[58]  J. Reifenrath,et al.  Biocompatibility and degradation behaviour of degradable magnesium sponges coated with bioglass – method establishment within the framework of a pilot study , 2010 .

[59]  Andrea Meyer-Lindenberg,et al.  Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits , 2010, Biomedical engineering online.

[60]  S. Stanzl-Tschegg,et al.  Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. , 2011, Acta biomaterialia.

[61]  Daniel Perchy,et al.  In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. , 2012, Journal of biomedical materials research. Part A.

[62]  Nick Birbilis,et al.  A survey of bio-corrosion rates of magnesium alloys , 2010 .

[63]  Ralf Rettig,et al.  Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. , 2009, Journal of biomedical materials research. Part A.

[64]  P. F. George,et al.  Effect of Alloying and Impurity Elements In Magnesium Alloy Cast Anodes , 1954 .

[65]  Shizhe Song,et al.  A Possible Biodegradable Magnesium Implant Material , 2007 .

[66]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[67]  Carolin Hampp,et al.  Research on the Biocompatibility of the New Magnesium Alloy LANd442—An In Vivo Study in the Rabbit Tibia over 26 Weeks , 2012 .

[68]  Shervin Eslami Harandi,et al.  Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy , 2011 .

[69]  Peter Hodgson,et al.  The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys , 2011 .

[70]  E. Ghali Corrosion and Protection of Magnesium Alloys , 2000 .

[71]  Jochem Nagels,et al.  Stress shielding and bone resorption in shoulder arthroplasty. , 2003, Journal of shoulder and elbow surgery.

[72]  David Farrar,et al.  Interpretation of protein adsorption: surface-induced conformational changes. , 2005, Journal of the American Chemical Society.

[73]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[74]  Zoran Filipi,et al.  Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck , 2007 .

[75]  H. Uhthoff,et al.  The effects of metal plates on post-traumatic remodelling and bone mass. , 1983, The Journal of bone and joint surgery. British volume.

[76]  Tim Woodfield,et al.  Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[77]  R. G. Richards,et al.  Animal models for implant biomaterial research in bone: a review. , 2007, European cells & materials.

[78]  Yufeng Zheng,et al.  In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure , 2011 .

[79]  F. Czerwinski Magnesium Alloys - Corrosion and Surface Treatments , 2011 .

[80]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[81]  W. Mueller,et al.  Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. , 2009, Journal of biomedical materials research. Part A.

[82]  T. Woodfield,et al.  In-vitro dissolution of magnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[83]  P. Chu,et al.  Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3 , 2011 .

[84]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[85]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[86]  P. Kumta,et al.  Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying , 2011 .

[87]  Fritz Thorey,et al.  Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. , 2011, Acta biomaterialia.

[88]  M. S. Yong,et al.  In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid , 2011 .

[89]  Y. Shikinami,et al.  Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. , 1999, Biomaterials.

[90]  Raimund Erbel,et al.  Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial , 2007, The Lancet.

[91]  Berend Denkena,et al.  In vitro corrosion of ZEK100 plates in Hank's Balanced Salt Solution , 2012, Biomedical engineering online.

[92]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[93]  L. Wagner,et al.  The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy , 2009 .

[94]  Akiko Yamamoto,et al.  Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro , 2009 .

[95]  J. Hanawalt Corrosion studies of magnesium and its alloys , 1942 .

[96]  S. Virtanen,et al.  Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. , 2008, Journal of biomedical materials research. Part A.

[97]  Berend Denkena,et al.  Biomechanical characterisation of a degradable magnesium-based (MgCa0.8) screw , 2012, Journal of Materials Science: Materials in Medicine.

[98]  N Birbilis,et al.  Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. , 2012, Acta biomaterialia.

[99]  Yufeng Zheng,et al.  In vitro degradation performance and biological response of a Mg-Zn-Zr alloy , 2011 .

[100]  Yunchang Xin,et al.  Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. , 2008, Acta biomaterialia.

[101]  Andrea Meyer-Lindenberg,et al.  Comparison of morphological changes in efferent lymph nodes after implantation of resorbable and non-resorbable implants in rabbits , 2011, Biomedical engineering online.

[102]  P. Uggowitzer,et al.  On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid. , 2009, Acta biomaterialia.

[103]  Ke Yang,et al.  In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application , 2008, Journal of materials science. Materials in medicine.

[104]  D. Mandler,et al.  Corrosion inhibition of magnesium by combined zirconia silica sol-gel films , 2008 .

[105]  C. R. Howlett,et al.  Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. , 2002, Journal of biomedical materials research.

[106]  P. Sullivan,et al.  Cranio‐Orbital Reconstruction: Safety and Image Quality of Metallic Implants on CT and MRI Scanning , 1994, Plastic and reconstructive surgery.

[107]  A. A. Nayeb-Hashemi,et al.  The Mg−Ni (Magnesium-Nickel) system , 1985 .

[108]  C. R. Howlett,et al.  The Effect of Magnesium Ions on Bone Bonding to Hydroxyapatite Coating on Titanium Alloy Implants , 2003 .

[109]  Ivonne Bartsch,et al.  New, fast corroding high ductility Mg–Bi–Ca and Mg–Bi–Si alloys, with no clinically observable gas formation in bone implants , 2011 .

[110]  W. Mueller,et al.  Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. , 2010, Acta biomaterialia.

[111]  R. Willumeit,et al.  Ion release from magnesium materials in physiological solutions under different oxygen tensions , 2011, Journal of Materials Science: Materials in Medicine.

[112]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[113]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[114]  E. Angelini,et al.  Bio-corrosion characterization of Mg–Zn–X (X = Ca, Mn, Si) alloys for biomedical applications , 2010, Journal of materials science. Materials in medicine.

[115]  Janine Fischer,et al.  Chemical surface alteration of biodegradable magnesium exposed to corrosion media. , 2011, Acta biomaterialia.

[116]  Lei Yang,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application , 2008 .