Comparative proteome profile of ungerminated spores and mycelium of the fungus Moniliophthora roreri , causal agent of frosty pod rot disease in cacao

[1]  F. Micheli,et al.  Identification of a key protein set involved in Moniliophthora perniciosa necrotrophic mycelium and basidiocarp development. , 2021, Fungal genetics and biology : FG & B.

[2]  N. Suzuki,et al.  Establishment of Neurospora crassa as a model organism for fungal virology , 2020, Nature Communications.

[3]  K. Gramacho,et al.  Hydrosoluble phylloplane components of Theobroma cacao modulate the metabolism of Moniliophthora perniciosa spores during germination. , 2020, Fungal biology.

[4]  Q. Xiang,et al.  YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural , 2019, Applied Microbiology and Biotechnology.

[5]  D. Maes,et al.  Structure of the Prx6-subfamily 1-Cys peroxiredoxin from Sulfolobus islandicus , 2019, Acta crystallographica. Section F, Structural biology communications.

[6]  Xianghong Meng,et al.  Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea. , 2019, Journal of the science of food and agriculture.

[7]  N. Pfanner,et al.  Dual Role of Mitochondrial Porin in Metabolite Transport across the Outer Membrane and Protein Transfer to the Inner Membrane. , 2019, Molecular cell.

[8]  K. Gramacho,et al.  Proteomic analysis during of spore germination of Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao , 2017, BMC Microbiology.

[9]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[10]  K. Gramacho,et al.  Protein profile and protein interaction network of Moniliophthora perniciosa basidiospores , 2016, BMC Microbiology.

[11]  Xingzhong Liu,et al.  Genetic Manipulation of the Pneumocandin Biosynthetic Pathway for Generation of Analogues and Evaluation of Their Antifungal Activity. , 2015, ACS chemical biology.

[12]  Jürgen Schmidt,et al.  Proteomic profiling of Botrytis cinerea conidial germination , 2015, Archives of Microbiology.

[13]  J. Álvarez,et al.  Estado de la Moniliasis del cacao causada por Moniliophthora roreri en Colombia , 2014 .

[14]  R. Sicher,et al.  Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. , 2014, Molecular plant pathology.

[15]  Richard A. Wilson,et al.  Evidence for a Transketolase-Mediated Metabolic Checkpoint Governing Biotrophic Growth in Rice Cells by the Blast Fungus Magnaporthe oryzae , 2014, PLoS pathogens.

[16]  P. Mieczkowski,et al.  Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases , 2014, BMC Genomics.

[17]  R. González-Fernández,et al.  Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. , 2014, Journal of proteomics.

[18]  D. Garvin,et al.  Infection of Brachypodium distachyon by Formae Speciales of Puccinia graminis: Early Infection Events and Host-Pathogen Incompatibility , 2013, PloS one.

[19]  Yasin F. Dagdas,et al.  Septin-Mediated Plant Cell Invasion by the Rice Blast Fungus, Magnaporthe oryzae , 2012, Science.

[20]  P. Mazzafera,et al.  Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. , 2011, Plant physiology and biochemistry : PPB.

[21]  B. Gossen,et al.  Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. , 2010, Molecular plant pathology.

[22]  H. Ro,et al.  Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. , 2010, Fungal genetics and biology : FG & B.

[23]  K. Snetselaar,et al.  A genome-based analysis of amino acid metabolism in the biotrophic plant pathogen Ustilago maydis. , 2008, Fungal genetics and biology : FG & B.

[24]  G. Steinberg,et al.  Ustilago maydis, a new fungal model system for cell biology. , 2008, Trends in cell biology.

[25]  M. C. Aime,et al.  Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Moniliophthora roreri in tropical America. , 2007 .

[26]  Dominique Sanglard,et al.  Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence , 2003, Molecular microbiology.

[27]  L A Herzenberg,et al.  Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. Lorimer,et al.  Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Brody,et al.  Biochemical genetics of Neurospora crassa conidial germination , 1976 .

[30]  R. Subramaniam,et al.  Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. , 2019, Fungal genetics and biology : FG & B.

[31]  R. Sicher,et al.  Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri. , 2013 .

[32]  K Tanaka,et al.  Structure and functions of the 20S and 26S proteasomes. , 1996, Annual review of biochemistry.