Simulation of PLL with impulse signals in MATLAB: Limitations, hidden oscillations, and pull-in range

The limitations of PLL simulation are demonstrated on an example of phase-locked loop with triangular phase detector characteristic. It is shown that simulation in MatLab may not reveal periodic oscillations (e.g. such as hidden oscillations) and thus may lead to unreliable conclusions on the width of pull-in range.

[1]  Viet-Thanh Pham,et al.  Synchronization and circuit design of a chaotic system with coexisting hidden attractors , 2015 .

[2]  Nikolay V. Kuznetsov,et al.  Nonlinear analysis of classical phase-locked loops in signal's phase space , 2014 .

[3]  V. D. Shalfeev,et al.  On the magnitude of the locking band of a phase-shift automatic frequency control system with a proportionally integrating filter , 1970 .

[4]  Angelo Brambilla,et al.  Frequency warping in time-domain circuit simulation , 2003 .

[5]  Nikolay V. Kuznetsov,et al.  A short survey on nonlinear models of the classic Costas loop: Rigorous derivation and limitations of the classic analysis , 2015, 2015 American Control Conference (ACC).

[6]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[7]  N. Gubar,et al.  Investigation of a piecewise linear dynamical system with three parameters , 1961 .

[8]  Daniel Y. Abramovitch,et al.  Phase-locked loops: a control centric tutorial , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[9]  Nikolay V. Kuznetsov,et al.  Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large , 2015, Signal Process..

[10]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[11]  Venceslav F. Kroupa,et al.  Phase Lock Loops and Frequency Synthesis , 2003 .

[12]  Julien Clinton Sprott,et al.  Strange attractors with various equilibrium types , 2015 .

[13]  Nikolay V. Kuznetsov,et al.  Analytical Method for Computation of Phase-Detector Characteristic , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Nikolay V. Kuznetsov,et al.  Limitations of the classical phase-locked loop analysis , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[15]  Sundarapandian Vaidyanathan,et al.  A 5-D hyperchaotic Rikitake dynamo system with hidden attractors , 2015 .

[16]  Nikolay V. Kuznetsov,et al.  Rigorous mathematical definitions of the hold-in and pull-in ranges for phase-locked loops , 2015 .

[17]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[18]  T. Saether,et al.  High-level continuous-time sigma delta design in Matlab/Simulink , 2009, 2009 NORCHIP.

[19]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[20]  Roland E. Best Phase-locked loops : design, simulation, and applications ; [including CD with PLL design and simulation software] , 2007 .

[21]  Anirban Ray,et al.  Memristive non-linear system and hidden attractor , 2015, The European Physical Journal Special Topics.

[22]  Nikolay V. Kuznetsov,et al.  Limitations of PLL simulation: hidden oscillations in SPICE analysis , 2015, ArXiv.

[23]  Věnceslav F. Kroupa,et al.  Phase Lock Loops and Frequency Synthesis: Kroupa/Phase Lock Loops , 2005 .

[24]  Jacek Kudrewicz,et al.  Equations of Phase-Locked Loops: Dynamics on Circle, Torus and Cylinder , 2007 .

[25]  Alexander Medvedev,et al.  Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay , 2015 .

[26]  Tomasz Kapitaniak,et al.  Rare and hidden attractors in Van der Pol-Duffing oscillators , 2015 .

[27]  Julien Clinton Sprott,et al.  Recent new examples of hidden attractors , 2015 .

[28]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[29]  G. Jacquemod,et al.  Top-Down PLL Design Methodology Combining Block Diagram, Behavioral, and Transistor-Level Simulators , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[30]  Giovanni Bianchi,et al.  Phase-Locked Loop Synthesizer Simulation , 2005 .

[31]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[32]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[33]  Gennady A. Leonov,et al.  Pendulum-Like Systems , 1992 .

[34]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[35]  Sundarapandian Vaidyanathan,et al.  Hidden attractors in a chaotic system with an exponential nonlinear term , 2015 .

[36]  Federico Bizzarri,et al.  Reliable and efficient phase noise simulation of mixed-mode integer-N Phase-Locked Loops , 2013, 2013 European Conference on Circuit Theory and Design (ECCTD).

[37]  S. Brigati,et al.  Modeling of fractional-N division frequency synthesizers with SIMULINK and MATLAB , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[38]  Almudena Suarez,et al.  Stability Analysis of Nonlinear Microwave Circuits , 2003 .

[39]  Zhouchao Wei,et al.  Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors , 2015 .

[40]  Nikolaos I. Margaris Theory of the Non-linear Analog Phase Locked Loop , 2004 .

[41]  Yu Feng,et al.  Switched generalized function projective synchronization of two hyperchaotic systems with hidden attractors , 2015 .

[42]  T. E. Vadivasova,et al.  Numerical and experimental studies of attractors in memristor-based Chua’s oscillator with a line of equilibria. Noise-induced effects , 2015 .

[43]  Caner Özdemii̇r Wiley Series in Microwave and Optical Engineering , 2012 .

[44]  Federico Bizzarri,et al.  Accurate and Efficient PSD Computation in Mixed-Signal Circuits: A Time-Domain Approach , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[45]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[46]  Nikolay V. Kuznetsov,et al.  Nonlinear mathematical models of phase-locked loops : stability and oscillations , 2014 .

[47]  Andrew J. Viterbi,et al.  Principles of coherent communication , 1966 .

[48]  Francesca Pozzi,et al.  Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector. , 2011, Optics express.

[49]  Nikolay V. Kuznetsov,et al.  Hold-In, Pull-In, and Lock-In Ranges of PLL Circuits: Rigorous Mathematical Definitions and Limitations of Classical Theory , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.