Dissecting heterogeneity in malignant pleural mesothelioma through histo-molecular gradients for clinical applications

[1]  S. Lantuejoul,et al.  Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. , 2019, The Lancet. Oncology.

[2]  David L. Gibbs,et al.  Integrative Molecular Characterization of Malignant Pleural Mesothelioma. , 2018, Cancer discovery.

[3]  Triantafyllos Stylianopoulos,et al.  Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis , 2018, Front. Oncol..

[4]  Xiguang Chen,et al.  Axl inhibitors as novel cancer therapeutic agents. , 2018, Life sciences.

[5]  J. Aerts,et al.  Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma , 2018, International journal of molecular sciences.

[6]  T. Sanavia,et al.  MiR-21 over-expression and Programmed Cell Death 4 down-regulation features malignant pleural mesothelioma , 2018, Oncotarget.

[7]  S. Albelda,et al.  Novel therapies for malignant pleural mesothelioma. , 2018, The Lancet. Oncology.

[8]  Xiaoqi Zheng,et al.  InfiniumPurify: An R package for estimating and accounting for tumor purity in cancer methylation research , 2018, Genes & diseases.

[9]  D. Wainwright,et al.  IDO1 in cancer: a Gemini of immune checkpoints , 2018, Cellular & Molecular Immunology.

[10]  J. Chien,et al.  Cisplatin and Pemetrexed Activate AXL and AXL Inhibitor BGB324 Enhances Mesothelioma Cell Death from Chemotherapy , 2018, Front. Pharmacol..

[11]  A. Carnero,et al.  The cargo protein MAP17 (PDZK1IP1) regulates the immune microenvironment , 2017, Oncotarget.

[12]  C. Copie-Bergman,et al.  Correction: Use of the 22C3 anti-PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms , 2017, PloS one.

[13]  C. Copie-Bergman,et al.  Use of the 22C3 anti–PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms , 2017, PloS one.

[14]  J. Aerts,et al.  Novel insights into mesothelioma biology and implications for therapy , 2017, Nature Reviews Cancer.

[15]  D. Schrump,et al.  Targeting the epigenome in malignant pleural mesothelioma. , 2017, Translational lung cancer research.

[16]  Shu Liu,et al.  Targeting YAP in malignant pleural mesothelioma , 2017, Journal of cellular and molecular medicine.

[17]  Min Liu,et al.  miR-10a suppresses colorectal cancer metastasis by modulating the epithelial-to-mesenchymal transition and anoikis , 2017, Cell Death & Disease.

[18]  B. Schwaller,et al.  Stem Cell Factor-Based Identification and Functional Properties of In Vitro-Selected Subpopulations of Malignant Mesothelioma Cells , 2017, Stem cell reports.

[19]  J. Zucman‐Rossi,et al.  Co-occurring Mutations of Tumor Suppressor Genes, LATS2 and NF2, in Malignant Pleural Mesothelioma , 2016, Clinical Cancer Research.

[20]  I. Pastan,et al.  Mesothelin Immunotherapy for Cancer: Ready for Prime Time? , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  D. Backos,et al.  Targeting WEE1 Kinase in Cancer. , 2016, Trends in pharmacological sciences.

[22]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[23]  Thomas D. Wu,et al.  Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations , 2016, Nature Genetics.

[24]  Etienne Becht,et al.  Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy , 2016, Clinical Cancer Research.

[25]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[26]  Novel Insights into the Roles of Rho Kinase in Cancer , 2016, Archivum Immunologiae et Therapiae Experimentalis.

[27]  Jun Wang,et al.  Predicting tumor purity from methylation microarray data , 2015, Bioinform..

[28]  Jeffrey S. Morris,et al.  The Consensus Molecular Subtypes of Colorectal Cancer , 2015, Nature Medicine.

[29]  Chuanhe Yang,et al.  The Role of miR‐21 in Cancer , 2015, Drug development research.

[30]  S. Vacher,et al.  ATM has a major role in the double-strand break repair pathway dysregulation in sporadic breast carcinomas and is an independent prognostic marker at both mRNA and protein levels , 2015, British Journal of Cancer.

[31]  Athanasios Fevgas,et al.  DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions , 2014, Nucleic Acids Res..

[32]  Ángel M. Alganza,et al.  sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments , 2014 .

[33]  N. Seki,et al.  Tumour‐suppressive microRNA‐24‐1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer , 2014, FEBS letters.

[34]  L. Sempere,et al.  VISTA Is a Novel Broad-Spectrum Negative Checkpoint Regulator for Cancer Immunotherapy , 2014, Cancer Immunology Research.

[35]  V. Janelle,et al.  Role of the complement system in NK cell-mediated antitumor T-cell responses , 2014, Oncoimmunology.

[36]  F. Galateau-Sallé,et al.  Molecular Classification of Malignant Pleural Mesothelioma: Identification of a Poor Prognosis Subgroup Linked to the Epithelial-to-Mesenchymal Transition , 2014, Clinical Cancer Research.

[37]  Wanjun Yu,et al.  MicroRNA-148a suppresses epithelial-to-mesenchymal transition by targeting ROCK1 in non-small cell lung cancer cells , 2013, Molecular and Cellular Biochemistry.

[38]  Mira Ayadi,et al.  Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value , 2013, PLoS medicine.

[39]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[40]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[41]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[42]  J. Seidman,et al.  High-throughput multiplex sequencing of miRNA. , 2012, Current protocols in human genetics.

[43]  P. Betta,et al.  Immunohistochemistry and molecular diagnostics of pleural malignant mesothelioma. , 2012, Archives of pathology & laboratory medicine.

[44]  F. Galateau-Sallé,et al.  Molecular changes in mesothelioma with an impact on prognosis and treatment. , 2012, Archives of pathology & laboratory medicine.

[45]  M. Bui,et al.  MK1775, a Selective Wee1 Inhibitor, Shows Single-Agent Antitumor Activity against Sarcoma Cells , 2011, Molecular Cancer Therapeutics.

[46]  M. Jaurand,et al.  Role of Mutagenicity in Asbestos Fiber-Induced Carcinogenicity and Other Diseases , 2011, Journal of toxicology and environmental health. Part B, Critical reviews.

[47]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[48]  Matthew D. Wilkerson,et al.  ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking , 2010, Bioinform..

[49]  R. Aharonov,et al.  hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. , 2010, Cancer research.

[50]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[51]  B. Christensen,et al.  Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. , 2009, Cancer research.

[52]  Lin Zhang,et al.  The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis , 2008, Nature Cell Biology.

[53]  A. Olshen,et al.  Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. , 2006, Cancer research.

[54]  David J Sugarbaker,et al.  Tumorigenesis and Neoplastic Progression Identification of Novel Candidate Oncogenes and Tumor Suppressors in Malignant Pleural Mesothelioma Using Large-Scale Transcriptional Profiling , 2005 .

[55]  S. Mutsaers,et al.  Mesothelial progenitor cells and their potential in tissue engineering. , 2004, The international journal of biochemistry & cell biology.

[56]  S. Kitano,et al.  Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. , 2004, The American journal of pathology.

[57]  J. Herman,et al.  CpG island methylator phenotype in colorectal cancer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Jaurand,et al.  in vitro effects of recombinant human interferon gamma on human mesothelioma cell lines , 1993, International journal of cancer.