Finite element discretization of the Stokes and Navier – Stokes equations with boundary conditions on the pressure by

We consider the Stokes and Navier--Stokes equations with boundary conditions of Dirichlet type on the velocity on one part of the boundary and involving the pressure on the rest of the boundary. We write the variational formulations of such problems. Next we propose a finite element discretization of them and perform the a priori and a posteriori analysis of the discrete problem. Some numerical experiments are presented in order to justify our strategy.

[2]  N. Anders Petersson,et al.  Stability of pressure boundary conditions for Stokes and Navier-Stokes equations , 2001 .

[3]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[4]  Olivier Pironneau,et al.  Pressure boundary condition for the time‐dependent incompressible Navier–Stokes equations , 2006 .

[5]  Roger Lewandowski,et al.  Mathematical and Numerical Foundations of Turbulence Models and Applications , 2014 .

[6]  Christine Bernardi,et al.  Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..

[7]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[8]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[9]  G. Burton Sobolev Spaces , 2013 .

[10]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[11]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[12]  Hans Johnston,et al.  Finite Difference Schemes for Incompressible Flow Based on Local Pressure Boundary Conditions , 2002 .

[13]  O. Pironneau,et al.  Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes , 1986 .

[14]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[15]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[16]  François Dubois,et al.  Vorticity–velocity–pressure formulation for the Stokes problem , 2002 .

[17]  Stéphanie Salmon Développement numérique de la formation tourbillon-vitesse-pression pour le problème de stokes , 1999 .

[18]  S. Marušić On the Navier–Stokes system with pressure boundary condition , 2007 .

[19]  David Trujillo,et al.  Vorticity-velocity-pressure formulation for Stokes problem , 2003, Math. Comput..

[20]  Olivier Pironneau,et al.  The Stokes and Navier-Stokes equations with boundary conditions involving the pressure , 1994 .

[21]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[22]  Olivier Pironneau,et al.  A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression , 1987 .

[23]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[24]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[25]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[26]  James J. Feng,et al.  Pressure boundary conditions for computing incompressible flows with SPH , 2011, J. Comput. Phys..

[27]  R. Temam Navier-Stokes Equations , 1977 .

[28]  Thierry Dubois,et al.  Dynamic multilevel methods and the numerical simulation of turbulence , 1999 .

[29]  Frédéric Hecht,et al.  A FINITE ELEMENT DISCRETIZATION OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH MIXED BOUNDARY CONDITIONS , 2009 .

[30]  F. Dubois,et al.  Vorticity–velocity-pressure and stream function-vorticity formulations for the Stokes problem , 2003 .

[31]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[32]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Christine Bernardi,et al.  A model for two coupled turbulent fluids: Part I : Analysis of the system , 2002 .

[35]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[36]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .