A dynamic viscoelastic contact problem with normal compliance

A dynamic contact problem between a viscoelastic body and a deformable obstacle is numerically considered in this work. The contact is modeled by using the well-known normal compliance contact condition. The variational formulation of this problem is written in terms of the velocity field and it leads to a parabolic nonlinear variational equation. An existence and uniqueness result is stated. Fully discrete approximations are then introduced by using the finite element method to approximate the spatial variable, and a hybrid combination of the implicit and explicit Euler schemes to discretize the time derivatives. An a priori error analysis is recalled. Then, an a posteriori error analysis is provided extending some results already obtained in the study of the heat equation, other parabolic equations and the quasistatic case. Upper and lower bounds are proved. Finally, some two-dimensional numerical simulations are presented to demonstrate the accuracy and the behavior of the error estimators.

[1]  Georgios E. Stavroulakis,et al.  Dynamic frictional contact of a viscoelastic beam , 2006 .

[2]  Jeongho Ahn,et al.  Thick obstacle problems with dynamic adhesive contact , 2008 .

[3]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[4]  Rüdiger Verfürth,et al.  A posteriori error analysis of the fully discretized time-dependent Stokes equations , 2004 .

[5]  Meir Shillor,et al.  Vibrations of a nonlinear dynamic beam between two stops , 2009 .

[6]  M. Sofonea,et al.  Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders , 2009 .

[7]  D. Stewart,et al.  A viscoelastic Timoshenko beam with dynamic frictionless impact , 2009 .

[8]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[9]  M. Barboteu,et al.  A CLASS OF EVOLUTIONARY VARIATIONAL INEQUALITIES WITH APPLICATIONS IN VISCOELASTICITY , 2005 .

[10]  M. H. Ilyasov Dynamic stability of viscoelastic plates , 2007 .

[11]  Simona Ronchi Della Rocca,et al.  λ Δ -Models , 2004 .

[12]  S. Migórski,et al.  A Unified Approach to Dynamic Contact Problems in Viscoelasticity , 2006 .

[13]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[14]  Christine Bernardi,et al.  A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..

[15]  M. Cocou,et al.  Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body , 2006 .

[16]  M. Fabrizio,et al.  Some qualitative results on the dynamic viscoelasticity of the reissner–mindlin plate model , 2004 .

[17]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[18]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[19]  An a posteriori error analysis for dynamic viscoelastic problems , 2011 .

[20]  David E. Stewart,et al.  Dynamic frictionless contact in linear viscoelasticity , 2008 .

[21]  W. Han,et al.  A dynamic viscoelastic contact problem with normal compliance and damage , 2005 .

[23]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[24]  J. R. Fernández,et al.  A normal compliance contact problem in viscoelasticity: An a posteriori error analysis and computational experiments , 2011, J. Comput. Appl. Math..

[25]  J. Whiteman,et al.  Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems , 2007 .

[26]  Numerical analysis and simulations of a dynamic frictionless contact problem with damage , 2006 .

[27]  J. T. Oden,et al.  Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws , 1987 .

[28]  Christof Eck,et al.  Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .

[29]  M. Cocou Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity , 2002 .

[30]  M. Barboteu,et al.  Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity , 2008 .

[31]  A. Kulig Hemivariational inequality approach to the dynamic viscoelastic contact problem with nonmonotone normal compliance and slip-dependent friction , 2008 .

[32]  A. Klarbring,et al.  FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE , 1988 .

[33]  Zhenhai Liu,et al.  Dynamic contact problem for viscoelastic piezoelectric materials with slip dependent friction , 2009 .

[34]  J. Whiteman,et al.  Models, algorithms and error estimation for computational viscoelasticity , 2005 .

[35]  Analysis of a time discretization for an implicit variational inequality modelling dynamic contact problems with friction , 2001 .

[36]  J. Jarusek,et al.  DYNAMIC CONTACT PROBLEMS WITH SMALL COULOMB FRICTION FOR VISCOELASTIC BODIES: EXISTENCE OF SOLUTIONS , 1999 .

[37]  M. Shillor,et al.  Existence and Regularity for Dynamic Viscoelastic Adhesive Contact with Damage , 2006 .