Parabolic equations in Musielak - Orlicz spaces with discontinuous in time N-function
暂无分享,去创建一个
Piotr Gwiazda | Jakub Skrzeczkowski | Miroslav Bulíček | P. Gwiazda | M. Bulíček | Jakub Skrzeczkowski
[1] J. Graver,et al. Graduate studies in mathematics , 1993 .
[2] P. Hästö,et al. Orlicz Spaces and Generalized Orlicz Spaces , 2019, Lecture Notes in Mathematics.
[3] M. Ruzicka,et al. Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .
[4] A. Świerczewska-Gwiazda,et al. Nonlinear parabolic problems in Musielak--Orlicz spaces , 2013, 1306.2186.
[5] Parabolic Systems with p, q-Growth: A Variational Approach , 2013 .
[6] Julian Musielak,et al. Orlicz Spaces and Modular Spaces , 1983 .
[7] Camillo De Lellis,et al. ORDINARY DIFFERENTIAL EQUATIONS WITH ROUGH COEFFICIENTS AND THE RENORMALIZATION THEOREM OF AMBROSIO , 2007 .
[8] G. Mingione,et al. Regularity for Double Phase Variational Problems , 2015 .
[9] P. Gwiazda,et al. Existence and homogenization of nonlinear elliptic systems in nonreflexive spaces , 2018, Nonlinear Analysis.
[10] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[11] P. Gwiazda,et al. Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.
[12] G. Mingione,et al. Regularity for general functionals with double phase , 2017, 1708.09147.
[13] P. Gwiazda,et al. Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak–Orlicz spaces in the class of renormalized solutions , 2017, Journal of Differential Equations.
[14] I. Chlebicka,et al. Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or L1 data , 2018, Journal of Mathematical Analysis and Applications.
[15] P. Gwiazda,et al. Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces , 2021, Springer Monographs in Mathematics.
[16] Paolo Marcellini. Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions , 1989 .
[17] Camillo De Lellis. ORDINARY DIFFERENTIAL EQUATIONS WITH ROUGH COEFFICIENTS AND THE RENORMALIZATION THEOREM OF , 2007 .
[18] G. Burton. Sobolev Spaces , 2013 .
[19] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[20] Paolo Marcellini. A variational approach to parabolic equations under general and p,q-growth conditions , 2020 .
[21] F. Browder,et al. Strongly nonlinear parabolic initial-boundary value problems. , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[22] P. Gwiazda,et al. Parabolic Equations in Anisotropic Orlicz Spaces with General N -functions , 2011 .
[23] G. Mingione,et al. Non-autonomous functionals, borderline cases and related function classes , 2016 .
[24] L. Evans. Measure theory and fine properties of functions , 1992 .
[25] Steady flow of non-Newtonian fluids — monotonicity methods in generalized Orlicz spaces , 2010 .
[26] P. Gwiazda,et al. Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces , 2015 .
[27] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[28] P. Hästö,et al. Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .
[29] R. Landes. On the existence of weak solutions for quasilinear parabolic initial-boundary value problems , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[30] D. Meskine,et al. Parabolic Equations in Orlicz Spaces , 2005 .
[31] I. Chlebicka,et al. A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces , 2018, Nonlinear Analysis.
[32] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[33] S. Byun,et al. Interior and boundary higher integrability of very weak solutions for quasilinear parabolic equations with variable exponents , 2018, Nonlinear Analysis.
[34] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[35] A. Świerczewska-Gwiazda. Anisotropic parabolic problems with slowly or rapidly growing terms , 2013, 1307.2337.
[36] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[37] Sergey Shmarev,et al. Strong solutions of evolution equations with p(x,t)-Laplacian: Existence, global higher integrability of the gradients and second-order regularity , 2021 .
[38] D. Meskine,et al. Parabolic initial-boundary value problems in Orlicz spaces , 2005 .
[39] S. Antontsev,et al. Evolution PDEs with Nonstandard Growth Conditions , 2015 .
[40] Alberto Fiorenza,et al. Variable Lebesgue Spaces: Foundations and Harmonic Analysis , 2013 .
[41] Giovanni P. Galdi,et al. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .
[42] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[43] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[44] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[45] Paolo Marcellini. Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .
[46] Thomas K. Donaldson. Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems , 1974 .