Parabolic equations in Musielak - Orlicz spaces with discontinuous in time N-function

We consider a parabolic PDE with Dirichlet boundary condition and monotone operator $A$ with non-standard growth controlled by an $N$-function depending on time and spatial variable. We do not assume continuity in time for the $N$-function. Using an additional regularization effect coming from the equation, we establish the existence of weak solutions and in the particular case of isotropic $N$-function, we also prove their uniqueness. This general result applies to equations studied in the literature like $p(t,x)$-Laplacian and double-phase problems.

[1]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[2]  P. Hästö,et al.  Orlicz Spaces and Generalized Orlicz Spaces , 2019, Lecture Notes in Mathematics.

[3]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[4]  A. Świerczewska-Gwiazda,et al.  Nonlinear parabolic problems in Musielak--Orlicz spaces , 2013, 1306.2186.

[5]  Parabolic Systems with p, q-Growth: A Variational Approach , 2013 .

[6]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[7]  Camillo De Lellis,et al.  ORDINARY DIFFERENTIAL EQUATIONS WITH ROUGH COEFFICIENTS AND THE RENORMALIZATION THEOREM OF AMBROSIO , 2007 .

[8]  G. Mingione,et al.  Regularity for Double Phase Variational Problems , 2015 .

[9]  P. Gwiazda,et al.  Existence and homogenization of nonlinear elliptic systems in nonreflexive spaces , 2018, Nonlinear Analysis.

[10]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[11]  P. Gwiazda,et al.  Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[12]  G. Mingione,et al.  Regularity for general functionals with double phase , 2017, 1708.09147.

[13]  P. Gwiazda,et al.  Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak–Orlicz spaces in the class of renormalized solutions , 2017, Journal of Differential Equations.

[14]  I. Chlebicka,et al.  Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or L1 data , 2018, Journal of Mathematical Analysis and Applications.

[15]  P. Gwiazda,et al.  Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces , 2021, Springer Monographs in Mathematics.

[16]  Paolo Marcellini Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions , 1989 .

[17]  Camillo De Lellis ORDINARY DIFFERENTIAL EQUATIONS WITH ROUGH COEFFICIENTS AND THE RENORMALIZATION THEOREM OF , 2007 .

[18]  G. Burton Sobolev Spaces , 2013 .

[19]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[20]  Paolo Marcellini A variational approach to parabolic equations under general and p,q-growth conditions , 2020 .

[21]  F. Browder,et al.  Strongly nonlinear parabolic initial-boundary value problems. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Gwiazda,et al.  Parabolic Equations in Anisotropic Orlicz Spaces with General N -functions , 2011 .

[23]  G. Mingione,et al.  Non-autonomous functionals, borderline cases and related function classes , 2016 .

[24]  L. Evans Measure theory and fine properties of functions , 1992 .

[25]  Steady flow of non-Newtonian fluids — monotonicity methods in generalized Orlicz spaces , 2010 .

[26]  P. Gwiazda,et al.  Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces , 2015 .

[27]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[28]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[29]  R. Landes On the existence of weak solutions for quasilinear parabolic initial-boundary value problems , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[30]  D. Meskine,et al.  Parabolic Equations in Orlicz Spaces , 2005 .

[31]  I. Chlebicka,et al.  A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces , 2018, Nonlinear Analysis.

[32]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[33]  S. Byun,et al.  Interior and boundary higher integrability of very weak solutions for quasilinear parabolic equations with variable exponents , 2018, Nonlinear Analysis.

[34]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[35]  A. Świerczewska-Gwiazda Anisotropic parabolic problems with slowly or rapidly growing terms , 2013, 1307.2337.

[36]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[37]  Sergey Shmarev,et al.  Strong solutions of evolution equations with p(x,t)-Laplacian: Existence, global higher integrability of the gradients and second-order regularity , 2021 .

[38]  D. Meskine,et al.  Parabolic initial-boundary value problems in Orlicz spaces , 2005 .

[39]  S. Antontsev,et al.  Evolution PDEs with Nonstandard Growth Conditions , 2015 .

[40]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces: Foundations and Harmonic Analysis , 2013 .

[41]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[42]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[43]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[44]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[45]  Paolo Marcellini Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .

[46]  Thomas K. Donaldson Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems , 1974 .