Probing structural adaptability in templated vanadium selenites

Abstract The structural adaptability of [V3O5(SeO3)3]n2n− layers in organically templated vanadium selenites was determined using a three step approach involving (i) an 84 reaction study with 14 distinct organic amines and 6 different reaction conditions, (ii) decision tree construction using both dependent and independent variables, and (iii) the derivation of chemical hypotheses. Formation of [V3O5(SeO3)3]n2n− layers requires that three criteria be met. First, compound stabilization through hydrogen-bonding with specific nucleophilic oxide ions is needed, requiring the presence of a primary ammonium site on the respective organic amine. Second, layer formation is facilitated through the use of compact ammonium cations that are able to achieve charge density matching with the anionic layers. Third, competition between organic ammonium cations and NH4+, which affects product formation, can be controlled through reagent choice and initial reactant concentrations. This approach to elucidate structural adaptability is generalizable and can be applied to a range of chemical systems.

[1]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[2]  S. Geller,et al.  Crystal chemistry of the garnets , 1967 .

[3]  H. Nakano,et al.  Synthesis and structural characterization of a new series of vanadoselenites, [Se(x)V(4-x)O(12-x)](4-x)- (x=1,2). , 2001, Inorganic chemistry.

[4]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[5]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[6]  Matthias Zeller,et al.  Formation principles for vanadium selenites: the role of pH on product composition. , 2014, Inorganic chemistry.

[7]  Alexander J. Norquist,et al.  Formation Principles for Templated Vanadium Selenite Oxalates , 2013 .

[8]  M. Fujita,et al.  Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules. , 1998, Angewandte Chemie.

[9]  Gautam R Desiraju,et al.  C-H...O and other weak hydrogen bonds. From crystal engineering to virtual screening. , 2005, Chemical communications.

[10]  P. Cox,et al.  The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. , 2003, Chemical reviews.

[11]  D. O′Hare,et al.  The role of amine sulfates in hydrothermal uranium chemistry. , 2005, Inorganic chemistry.

[12]  Amitava Choudhury,et al.  Organically templated vanadyl selenites with layered structures. , 2003, Inorganic chemistry.

[13]  Mark T. Anderson,et al.  Structural similarities among oxygen-deficient perovskites , 1993 .

[14]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[15]  Mark T. Anderson,et al.  B-cation arrangements in double perovskites , 1993 .

[16]  Guanghua Li,et al.  Hydrothermal syntheses and structures of two novel vanadium selenites, {[VO(OH)(H2O)](SeO3)}4·2H2O and (H3NCH2CH2NH3)[(VO)(SeO3)2] , 2003 .

[17]  C. N. R. Rao,et al.  Exploration of a simple universal route to the myriad of open-framework metal phosphates , 2000 .

[18]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[19]  K. Poeppelmeier,et al.  The adaptable lyonsite structure. , 2006, Chemistry.

[20]  J Fraser Stoddart,et al.  A Switchable Hybrid [2]-Catenane Based on Transition Metal Complexation and π-Electron Donor-Acceptor Interactions. , 1996, Journal of the American Chemical Society.

[21]  Matthias Zeller,et al.  Role of hydrogen-bonding in the formation of polar achiral and nonpolar chiral vanadium selenite frameworks. , 2012, Inorganic chemistry.

[22]  P. Halasyamani,et al.  Directed synthesis of noncentrosymmetric molybdates using composition space analysis. , 2006, Inorganic chemistry.

[23]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[24]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[25]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[26]  Guanghua Li,et al.  Hydrothermal synthesis and structural characterization of a new layered vanadium selenite: (C4N2H12)0.5[(VO)2(H2O)2(SeO3)2(HSeO3)] , 2005 .

[27]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[28]  A. Otero-de-la-Roza,et al.  Critic2: A program for real-space analysis of quantum chemical interactions in solids , 2014, Comput. Phys. Commun..

[29]  Russell K. Feller,et al.  Structural diversity and chemical trends in hybrid inorganic-organic framework materials. , 2006, Chemical communications.

[30]  Xiangchun Liu,et al.  Tolerance factor and the stability discussion of ABO3-type ilmenite , 2009 .

[31]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[32]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[33]  A. Rabenau The Role of Hydrothermal Synthesis in Preparative Chemistry , 1985 .

[34]  D. Weber CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite Structure , 1978 .

[35]  D. Weber CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .

[36]  Matthias Zeller,et al.  The role of stereoactive lone pairs in templated vanadium tellurite charge density matching. , 2010, Inorganic chemistry.

[37]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[38]  Alexander J. Norquist,et al.  [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10]; new polar templated vanadium tellurite enantiomers , 2011 .

[39]  Matthias Zeller,et al.  Role of noncovalent interactions in vanadium tellurite chain connectivities. , 2015, Inorganic chemistry.

[40]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[41]  Alexander J. Norquist,et al.  Charge density matching in templated molybdates , 2009 .

[42]  Alexander J. Norquist,et al.  Steric-Induced Layer Flection in Templated Vanadium Tellurites , 2013 .

[43]  Gérard Férey,et al.  Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry , 2001 .

[44]  Hongfang Yang,et al.  A novel vanadyl selenite templated by organic salt: [(VO)(H2O)2(SeO3)]2[(H2pipe)SO4] , 2004 .

[45]  Frank Baumann,et al.  Changeover in a multimodal copper(ii) catenate as monitored by EPRspectroscopy , 1997 .

[46]  Tian-jun Lou,et al.  Synthesis and crystal structures of two inorganic–organic hybrid vanadium selenites with layered structures: (DABCOH2)[(VO2)(SeO3)]2·1.25H2O and (pipeH2)[(VO)2(C2O4)(SeO3)2] , 2009 .

[47]  Jing Xu,et al.  Synthesis and Characterization of a New Layered Vanadium Selenite: β-(H3NCH2CH2NH3) [(VO)(SeO3)2]. , 2004 .

[48]  M. Fujita,et al.  “Ship-in-a-Bottle” Formation of Stable Hydrophobic Dimers of cis-Azobenzene and -Stilbene Derivatives in a Self-Assembled Coordination Nanocage , 1999 .

[49]  W. Haag Catalysis by Zeolites – Science and Technology , 1994 .

[50]  Ángel Martín Pendás,et al.  Critic: a new program for the topological analysis of solid-state electron densities , 2009, Comput. Phys. Commun..

[51]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[52]  R. Haushalter,et al.  Reduced molybdenum phosphates : octahedral-tetrahedral framework solids with tunnels, cages, and micropores , 1992 .

[53]  Gérard Férey,et al.  Oxyfluorinated microporous compounds ULM-n: chemical parameters, structures and a proposed mechanism for their molecular tectonics , 1995 .

[54]  Alexander J. Norquist,et al.  Beyond Charge Density Matching: The Role of C–H···O Interactions in the Formation of Templated Vanadium Tellurites , 2011 .

[55]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[56]  Desmond J Hubbard,et al.  Synthetic approaches for noncentrosymmetric molybdates. , 2008, Inorganic chemistry.

[57]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[58]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .