On the Complexity of Recognizing Hamming Graphs and Related Classes of Graphs

This paper contains a new algorithm that recognizes whether a given graph G is a Hamming graph , i . e . a Cartesian product of complete graphs , in O ( m ) time and O ( n 2 ) space . Here m and n denote the numbers of edges and vertices of G , respectively . Previously this was only possible in O ( m log n ) time . Moreover , we present a survey of other recognition algorithms for Hamming graphs , retracts of Hamming graphs and isometric subgraphs of Hamming graphs . Special emphasis is also given to the bipartite case in which these classes are reduced to binary Hamming graphs , median graphs and partial binary Hamming graphs .

[1]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[2]  R. M. On Cubical Graphs , 1974 .

[3]  Martyn Mulder,et al.  The structure of median graphs , 1978, Discret. Math..

[4]  Kabekode V. S. Bhat On the Complexity of Testing a Graph for N-Cube , 1980, Inf. Process. Lett..

[5]  Hans-Jürgen Bandelt,et al.  Retracts of hypercubes , 1984, J. Graph Theory.

[6]  Peter Winkler,et al.  Collapse of the Metric Hierarchy for Bipartite Graphs , 1986, Eur. J. Comb..

[7]  Wilfried Imrich,et al.  Embedding Graphs into Cartesian Products , 1989 .

[8]  Michael E. Saks,et al.  A Dynamic location problem for graphs , 1989, Comb..

[9]  Elke Wilkeit,et al.  Isometric embeddings in Hamming graphs , 1990, J. Comb. Theory, Ser. B.

[10]  Franz Aurenhammer,et al.  Computing equivalence classes among the edges of a graph with applications , 1992, Discret. Math..

[11]  Tomás Feder Product graph representations , 1992, J. Graph Theory.

[12]  Elke Wilkeit,et al.  The retracts of Hamming graphs , 1992, Discret. Math..

[13]  M. Laurent,et al.  Hypermetric graphs , 1993 .

[14]  Sergey V. Shpectorov,et al.  On Scale Embeddings of Graphs into Hypercubes , 1993, Eur. J. Comb..

[15]  Franz Aurenhammer,et al.  Faster Isometric Embedding in Products of Complete Graphs , 1994, Discret. Appl. Math..

[16]  David Avis,et al.  Metric extensions and the L1 hierarchy , 1994, Discret. Math..

[17]  Monique Laurent,et al.  ℓ1-Rigid Graphs , 1994 .

[18]  Hans-Jürgen Bandelt,et al.  Quasi-median graphs and algebras , 1994, J. Graph Theory.

[19]  Johann Hagauer,et al.  Skeletons, recognition algorithm and distance matrix of quasi-median graphs , 1995, Int. J. Comput. Math..