High Pressure Behavior of Chromium and Yttrium Molybdate (Cr2Mo3O12, Y2Mo3O12)

The high pressure behavior of negative thermal expansion materials continues to be of interest, as their potential use in controlled thermal expansion composites can be affected by irreversible pressure-induced phase transitions. To date, it is not possible to predict the high pressure behavior of these compounds, necessitating measurements on each composition. In this work, high pressure synchrotron powder X-ray diffraction studies of Cr2Mo3O12 and Y2Mo3O12 were conducted in a diamond anvil cell. Chromium molybdate, which adopts the monoclinic P21/a structure under ambient conditions, was found to not undergo any crystalline-crystalline transitions up to 8.9 GPa. The orthorhombic ambient pressure polymorph of yttrium molybdate was found to undergo a phase transition to the monoclinic P21/a scandium tungstate structure below 0.13 GPa. This structure is frequently observed for related materials at low temperatures, but has never been reported for Y2Mo3O12. No additional changes in this material were observed up to 4.9 GPa. The fact that the monoclinic polymorphs of these materials do not undergo phase transitions within the studied pressure range makes them unique among A2M3O12 materials, as most isostructural compositions undergo at least one phase transition to crystalline high pressure phases.

[1]  W. Kaminsky Topas , 2020, Catalysis from A to Z.

[2]  A. K. Tyagi,et al.  High Pressure Phases and Amorphization of a Negative Thermal Expansion Compound TaVO5. , 2018, Inorganic chemistry.

[3]  A. Yakovenko,et al.  Zero Thermal Expansion and Abrupt Amorphization on Compression in Anion Excess ReO3-Type Cubic YbZrF7 , 2018 .

[4]  Alan A. Coelho,et al.  TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ , 2018 .

[5]  Maity Gouranga,et al.  COMPREHENSIVE STUDY OF , 2018 .

[6]  A. Wilkinson,et al.  Synthesis of Defect Perovskites (He2-x□x)(CaZr)F6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF6. , 2017, Journal of the American Chemical Society.

[7]  A. Wilkinson,et al.  Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate , 2017 .

[8]  J. Haines,et al.  Anomalous Compressibility and Amorphization in AlPO4-17, the Oxide with the Highest Negative Thermal Expansion , 2017 .

[9]  S. Lapidus,et al.  Composition, Response to Pressure, and Negative Thermal Expansion in MIIBIVF6 (M = Ca, Mg; B = Zr, Nb) , 2017 .

[10]  J. Filho,et al.  High-pressure Raman scattering on Fe2(MoO4)3 microcrystals obtained by a hydrothermal method , 2016 .

[11]  Xiaodong Gao,et al.  High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa) , 2016 .

[12]  A. G. S. Filho,et al.  Pressure‐induced structural transformations in In2‐xYx(MoO4)3 systems , 2016 .

[13]  K. Chapman,et al.  Large Negative Thermal Expansion and Anomalous Behavior on Compression in Cubic ReO3-Type AIIBIVF6: CaZrF6 and CaHfF6 , 2015 .

[14]  H. Fang,et al.  A phenomenological expression to describe the temperature dependence of pressure-induced softening in negative thermal expansion materials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  K. Chapman,et al.  Dramatic softening of the negative thermal expansion material HfW2O8 upon heating through its WO4 orientational order-disorder phase transition , 2014 .

[16]  K. Chapman,et al.  Negative thermal expansion and compressibility of Sc1–xYxF3 (x≤0.25) , 2013 .

[17]  M. White,et al.  Pressure-induced crystal–amorphous transformation in Y2Mo3O12 , 2013 .

[18]  H. Fang,et al.  Pressure-induced softening as a common feature of framework structures with negative thermal expansion , 2013, 1306.2395.

[19]  M. Tucker,et al.  Temperature-dependent pressure-induced softening in Zn(CN) 2 , 2013, 1306.1909.

[20]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[21]  A. G. S. Filho,et al.  Pressure-induced structural phase transitions and amorphization in selected molybdates and tungstates , 2012 .

[22]  C. Lind,et al.  Two Decades of Negative Thermal Expansion Research: Where Do We Stand? , 2012, Materials.

[23]  Andrew L. Goodwin,et al.  PASCal: a principal axis strain calculator for thermal expansion and compressibility determination , 2012, 1204.3007.

[24]  C. P. Heinrich,et al.  In-situ non-ambient X-ray diffraction studies of indium tungstate , 2012 .

[25]  K. Takenaka Negative thermal expansion materials: technological key for control of thermal expansion , 2012, Science and technology of advanced materials.

[26]  C. Lind,et al.  Zirconium tungstate/polymer nanocomposites: Challenges and opportunities , 2011 .

[27]  K. Chapman,et al.  Pronounced negative thermal expansion from a simple structure: cubic ScF(3). , 2010, Journal of the American Chemical Society.

[28]  N. A. Banek,et al.  Autohydration of Nanosized Cubic Zirconium Tungstate , 2010, Journal of the American Chemical Society.

[29]  Masanari Takahashi,et al.  Fabrication and thermal expansion properties of ZrW2O8/Zr2WP2O12 composites , 2010 .

[30]  Tamam I. Baiz Non-hydrolytic sol-gel synthesis and characterization of materials of the type AA'M3O12 , 2010 .

[31]  A. Wilkinson,et al.  In situ high-pressure synchrotron x-ray diffraction study of Zr2(WO4)(PO4)2 up to 16 GPa , 2009 .

[32]  Michel B. Johnson,et al.  Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O12 and Related Materials , 2009 .

[33]  W. Tremel,et al.  Particle size and morphology control of the negative thermal expansion material cubic zirconium tungstate , 2009 .

[34]  J. Chervin,et al.  Hydrostatic limits of 11 pressure transmitting media , 2009 .

[35]  K. Chapman,et al.  Anomalous Thermal Expansion of Cuprites: A Combined High Resolution Pair Distribution Function and Geometric Analysis , 2009 .

[36]  K. Chapman,et al.  Scandium tungstate above 2.5 GPa , 2008 .

[37]  R. P. Rao,et al.  Charge Transport by Polyatomic Anion Diffusion in Sc2(WO4)3 , 2008 .

[38]  A. Gindhart,et al.  Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol–gel method , 2008 .

[39]  J. Haines,et al.  Pressure-induced amorphization and decomposition ofFe[Co(CN)6] , 2008 .

[40]  A. Goodwin,et al.  Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. , 2008, Angewandte Chemie.

[41]  M. Green,et al.  Polymorphism in the negative thermal expansion material magnesium hafnium tungstate , 2008 .

[42]  J. Tani,et al.  Thermal expansion and mechanical properties of phenolic resin/ZrW2O8 composites , 2007 .

[43]  C. Lind,et al.  Polymorphism in yttrium molybdate Y2Mo3O12 , 2007 .

[44]  K. Chapman,et al.  Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide. , 2007, Journal of the American Chemical Society.

[45]  J. S. Evans,et al.  Structural description of pressure-induced amorphization in ZrW2O8. , 2007, Physical review letters.

[46]  J. Zhao,et al.  Effective hydrostatic limits of pressure media for high-pressure crystallographic studies , 2007 .

[47]  J. Colin,et al.  Non-hydrolytic sol–gel synthesis, properties, and high-pressure behavior of gallium molybdate , 2006 .

[48]  P. Littlewood,et al.  Pressure-induced elastic softening of monocrystalline zirconium tungstate at 300 K , 2006 .

[49]  T. Varga,et al.  Neutron powder diffraction study of the orthorhombic to monoclinic transition in Sc2W3O12 on compression , 2006 .

[50]  F. Rizzo,et al.  Negative thermal expansion in Y2Mo3O12 , 2005 .

[51]  C. D. Meyer,et al.  Synthesis and thermal expansion of ZrO2/ZrW2O8 composites , 2005 .

[52]  A. K. Tyagi,et al.  Phase transitions in Sc{sub 2}(WO{sub 4}){sub 3} under high pressure , 2005 .

[53]  T. Varga,et al.  High pressure synchrotron x-ray powder diffraction study of Sc2Mo3O12 and Al2W3O12 , 2005 .

[54]  T. Varga,et al.  In situ high-pressure synchrotron x-ray diffraction study of Sc 2 W 3 O 12 at up to 10 GPa , 2005 .

[55]  A. K. Tyagi,et al.  Pressure-induced phase transitions in Al2(WO4)3 , 2005 .

[56]  C. Lukehart,et al.  Zirconium tungstate (ZrW2O8)/polyimide nanocomposites exhibiting reduced coefficient of thermal expansion , 2005 .

[57]  A. K. Tyagi,et al.  Phase transitions in Sc 2 (WO 4 ) 3 under high pressure , 2005 .

[58]  A. Arora,et al.  Amorphization and decomposition of scandium molybdate at high pressure , 2005 .

[59]  A. K. Tyagi,et al.  Pressure-induced amorphization in Y2(WO4)3: in situ X-ray diffraction and Raman studies , 2004 .

[60]  S. N. Achary,et al.  Phase transitions in Al2(WO4)3: high pressure investigations of low frequency dielectric constant and crystal structure , 2004 .

[61]  A. G. S. Filho,et al.  High-pressure Raman study of Al2(WO4)3 , 2004 .

[62]  A. G. S. Filho,et al.  Pressure-induced structural transformations in the molybdate Sc 2 ( MoO 4 ) 3 , 2004 .

[63]  A. Arora,et al.  Two-stage amorphization of scandium molybdate at high pressure , 2004 .

[64]  K. Ozaki,et al.  Fabrication and Thermal Expansion of Al-ZrW2O8 Composites by Pulse Current Sintering Process , 2003 .

[65]  S. N. Achary,et al.  High pressure AC resistivity and compressibility study on Al , 2003 .

[66]  R. Secco,et al.  Ionic to electronic dominant conductivity in Al2(WO4)3 at high pressure and high temperature , 2003 .

[67]  Hongjiang Liu,et al.  Anomalous ionic conductivity of Sc2(WO4)3mediated by structural changes at high pressures and temperatures , 2002 .

[68]  A. Sleight,et al.  Strong Negative Thermal Expansion Along the O—Cu—O Linkage in CuScO2. , 2002 .

[69]  A. K. Tyagi,et al.  Phase transition and negative thermal expansion in A2(MoO4)3 system (A=Fe3+, Cr3+ and Al3+) , 2002 .

[70]  S. N. Achary,et al.  Preparation, thermal expansion, high pressure and high temperature behavior of Al2(WO4)3 , 2002 .

[71]  A. Sleight,et al.  Strong Negative Thermal Expansion along the O−Cu−O Linkage in CuScO2 , 2002 .

[72]  G. Adachi,et al.  Electrical conductivity and amorphization of Sc2(WO4)3 at high pressures and temperatures , 2002 .

[73]  Hongjiang Liu,et al.  X-ray diffraction study of pressure-induced amorphization in Lu2(WO4)3 , 2002 .

[74]  T. N. Kol’tsova X-ray Diffraction Study of Y2W3O12· 3H2O , 2001 .

[75]  G. Adachi,et al.  Pressure-induced amorphization in negative thermal expansion Sc2(WO4)3 , 2001 .

[76]  Hongjiang Liu,et al.  Pressure-induced amorphization of hydrated Na-X zeolite , 2001 .

[77]  John S. O. Evans,et al.  Structural phase transitions and negative thermal expansion in Sc2(MoO4)3 , 2000 .

[78]  J. Hanson,et al.  Understanding negative thermal expansion and ‘trap door’ cation relocations in zeolite rho , 2000 .

[79]  A. Sleight,et al.  Further Contraction of ZrW2O8 , 1999 .

[80]  A. Sleight,et al.  Negative thermal expansion in Y2W3O12 , 1999 .

[81]  D. Dunand,et al.  Phase transformation and thermal expansion of Cu/ZrW_2O_8 metal matrix composites , 1999 .

[82]  Zhongbo Hu,et al.  Synthesis and properties of the negative thermal expansion material cubic ZrMo2O8 , 1998 .

[83]  A. Sleight ISOTROPIC NEGATIVE THERMAL EXPANSION , 1998 .

[84]  A. Sleight,et al.  Exceptional Negative Thermal Expansion in AlPO4-17 , 1998 .

[85]  Perottoni,et al.  Pressure-induced amorphization and negative thermal expansion in ZrW2O8 , 1998, Science.

[86]  John S. O. Evans,et al.  Negative thermal expansion in Sc2(WO4)3 , 1998 .

[87]  Yining Huang IR spectroscopic study of the effects of high pressure on zeolites Y, A and sodalite , 1998 .

[88]  M. Attfield Strong negative thermal expansion in siliceous faujasite , 1998 .

[89]  J. S. Evans,et al.  Pressure-induced phase transformation in ZrW2O8 — Compressibility and thermal expansion of the orthorhombic phase , 1997 .

[90]  D. Dunand,et al.  High-temperature reactivity in the ZrW2O8-Cu system , 1997 .

[91]  John S. O. Evans,et al.  Negative Thermal Expansion in ZrW2O8 and HfW2O8 , 1996 .

[92]  A. Sleight,et al.  Negative Thermal Expansion and Phase Transitions in the ZrV2-xPxO7 Series , 1995 .

[93]  K. Suito Pressure-Induced Amorphization. , 1993 .

[94]  H. A. McKinstry,et al.  Very Low Thermal Expansion Coefficient Materials , 1989 .

[95]  F. Birch,et al.  Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high‐temperature domain , 1986 .

[96]  Giorgio Piccaluga,et al.  X-ray diffraction study of a , 1977 .

[97]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[98]  K. E. Spear High-Temperature Reactivity , 1976 .

[99]  K. Nassau,et al.  Structural and phase relationships among trivalent tungstates and molybdates , 1971 .

[100]  K. Nassau,et al.  A comprehensive study of trivalent tungstates and molybdates of the type L2(MO4)3 , 1965 .