String graphs and incomparability graphs

Given a collection C of curves in the plane, its string graph is defined as the graph with vertex set C, in which two curves in C are adjacent if and only if they intersect. Given a partially ordered set (P,<), its incomparability graph is the graph with vertex set P, in which two elements of P are adjacent if and only if they are incomparable. It is known that every incomparability graph is a string graph. For "dense" string graphs, we establish a partial converse of this statement. We prove that for every ε>0 there exists δ>0 with the property that if C is a collection of curves whose string graph has at least ε |C|2 edges, then one can select a subcurve γ' of each γ ∈ C such that the string graph of the collection {γ':γ ∈ C} has at least δ |C|2 edges and is an incomparability graph. We also discuss applications of this result to extremal problems for string graphs and edge intersection patterns in topological graphs.

[1]  Jan Kyncl Ramsey-type constructions for arrangements of segments , 2012, Eur. J. Comb..

[2]  Frank Thomson Leighton,et al.  New lower bound techniques for VLSI , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  B. Rothschild,et al.  Asymptotic enumeration of partial orders on a finite set , 1975 .

[4]  Csaba D. Tóth,et al.  Turán-type results for partial orders and intersection graphs of convex sets , 2010 .

[5]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[6]  Jirí Matousek,et al.  Crossing number, pair-crossing number, and expansion , 2004, J. Comb. Theory, Ser. B.

[7]  János Pach,et al.  On grids in topological graphs , 2009, SCG '09.

[8]  F. Sinden Topology of thin film RC circuits , 1966 .

[9]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Hiraguchi On the Dimension of Orders , 1955 .

[11]  Jorge Urrutia,et al.  Comparability graphs and intersection graphs , 1983, Discret. Math..

[12]  David Conlon On the Ramsey multiplicity of complete graphs , 2012, Comb..

[13]  Jacob Fox A Bipartite Analogue of Dilworth’s Theorem , 2006, Order.

[14]  Eyal Ackerman,et al.  On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2006, SCG '06.

[15]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[16]  Robert E. Tarjan,et al.  Intersection graphs of curves in the plane , 1976, J. Comb. Theory, Ser. B.

[17]  János Pach,et al.  Ramsey-type results for geometric graphs , 1996, SCG '96.

[18]  P. Erdös Some remarks on the theory of graphs , 1947 .

[19]  János Pach,et al.  Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.

[20]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[21]  D. Conlon A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.

[22]  János Pach,et al.  Comment on Fox news , 2006 .

[23]  János Pach,et al.  How Many Ways Can One Draw A Graph? , 2003, Comb..

[24]  Marcus Schaefer,et al.  Decidability of string graphs , 2001, STOC '01.

[25]  A. Goodman On Sets of Acquaintances and Strangers at any Party , 1959 .

[26]  Jessica Engel,et al.  Problem , 1902 .

[27]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[28]  János Pach,et al.  Recognizing String Graphs Is Decidable , 2001, GD.

[29]  János Pach,et al.  Relaxing Planarity for Topological Graphs , 2002, JCDCG.

[30]  Marcus Schaefer,et al.  Recognizing string graphs in NP , 2002, STOC '02.

[31]  János Pach,et al.  A bipartite analogue of Dilworth's theorem for multiple partial orders , 2009, Eur. J. Comb..

[32]  Gyula Károlyi,et al.  Ramsey-Type Results for Geometric Graphs, I , 1997, Discret. Comput. Geom..

[33]  Jan Kratochvíl,et al.  String graphs requiring exponential representations , 1991, J. Comb. Theory, Ser. B.

[34]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[35]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[36]  János Pach,et al.  A Ramsey-type result for convex sets , 1994 .

[37]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[38]  Csaba D. Tóth,et al.  Intersection patterns of curves , 2011, J. Lond. Math. Soc..

[39]  Jan Kyncl Ramsey-type constructions for arrangements of segments , 2008, Electron. Notes Discret. Math..

[40]  Micha Sharir,et al.  Topological Graphs with No Large Grids , 2005, Graphs Comb..

[41]  Csaba D. Tóth,et al.  A bipartite strengthening of the Crossing Lemma , 2007, J. Comb. Theory, Ser. B.

[42]  Jan Kratochvíl,et al.  String graphs. I. The number of critical nonstring graphs is infinite , 1991, J. Comb. Theory, Ser. B.