THE DUALITY DIAGRAM IN DATA ANALYSIS: EXAMPLES OF MODERN APPLICATIONS.

Today's data-heavy research environment requires the integration of different sources of information into structured datasets that can not be analyzed as simple matrices. We introduce an old technique, known in the European data analyses circles as the Duality Diagram Approach, put to new uses through the use of a variety of metrics and ways of combining different diagrams together. This issue of the Annals of Applied Statistics contains contemporary examples of how this approach provides solutions to hard problems in data integration. We present here the genesis of the technique and how it can be seen as a precursor of the modern kernel based approaches.

[1]  Elizabeth Purdom,et al.  Analysis of a data matrix and a graph: Metagenomic data and the phylogenetic tree , 2011, 1202.5880.

[2]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[3]  Jean Thioulouse,et al.  The ade4 package - I : One-table methods , 2004 .

[4]  F. Cailliez,et al.  Introduction à l'analyse des données , 1976 .

[5]  Guy Perrière,et al.  Between-group analysis of microarray data , 2002, Bioinform..

[6]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[7]  Stéphane Dray,et al.  The ade4 Package-II: Two-table and K-table Methods , 2007 .

[8]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[9]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[10]  Thibaut Jombart,et al.  Revisiting Guerry’s data: Introducing spatial constraints in multivariate analysis , 2011, 1202.6485.

[11]  J. Thioulouse,et al.  The ade 4 package-I : One-table methods by , 2004 .

[12]  A. Gifi,et al.  NONLINEAR MULTIVARIATE ANALYSIS , 1990 .

[13]  Guy Perrière,et al.  Cross-platform comparison and visualisation of gene expression data using co-inertia analysis , 2003, BMC Bioinformatics.

[14]  M. Hill,et al.  Nonlinear Multivariate Analysis. , 1990 .

[15]  Calyampudi R. Rao The use and interpretation of principal component analysis in applied research , 1964 .

[16]  Florent Baty,et al.  Analysis with respect to instrumental variables for the exploration of microarray data structures , 2006, BMC Bioinformatics.

[17]  Tom Michael Mitchell,et al.  From the SelectedWorks of Marcel Adam Just 2008 Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings , 2016 .

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[20]  Aedín C Culhane,et al.  A multivariate analysis approach to the integration of proteomic and gene expression data , 2007, Proteomics.

[21]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[22]  Susan Holmes,et al.  Multivariate data analysis: The French way , 2008, 0805.2879.

[23]  Yves Escoufier,et al.  Operator related to a data matrix: a survey , 2006 .

[24]  Frank Preiswerk,et al.  Stability of gene contributions and identification of outliers in multivariate analysis of microarray data , 2008, BMC Bioinformatics.

[25]  Jean Thioulouse,et al.  Simultaneous analysis of a sequence of paired ecological tables: A comparison of several methods , 2011, 1202.5473.