Equiangular Kernel Dictionary Learning with Applications to Dynamic Texture Analysis

Most existing dictionary learning algorithms consider a linear sparse model, which often cannot effectively characterize the nonlinear properties present in many types of visual data, e.g. dynamic texture (DT). Such nonlinear properties can be exploited by the so-called kernel sparse coding. This paper proposed an equiangular kernel dictionary learning method with optimal mutual coherence to exploit the nonlinear sparsity of high-dimensional visual data. Two main issues are addressed in the proposed method: (1) coding stability for redundant dictionary of infinite-dimensional space, and (2) computational efficiency for computing kernel matrix of training samples of high-dimensional data. The proposed kernel sparse coding method is applied to dynamic texture analysis with both local DT pattern extraction and global DT pattern characterization. The experimental results showed its performance gain over existing methods.

[1]  Michel Ménard,et al.  Characterization and recognition of dynamic textures based on the 2D+T curvelet transform , 2015, Signal Image Video Process..

[2]  Fuchun Sun,et al.  Robust Kernel Dictionary Learning Using a Whole Sequence Convergent Algorithm , 2015, IJCAI.

[3]  Mehrtash Tafazzoli Harandi,et al.  Riemannian coding and dictionary learning: Kernels to the rescue , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Payam Saisan,et al.  Dynamic texture recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Andrew W. Fitzgibbon,et al.  Shift-Invariant Dynamic Texture Recognition , 2006, ECCV.

[6]  Larry S. Davis,et al.  Learning a discriminative dictionary for sparse coding via label consistent K-SVD , 2011, CVPR 2011.

[7]  Lei Zhang,et al.  Log-Euclidean Kernels for Sparse Representation and Dictionary Learning , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[10]  Nuno Vasconcelos,et al.  Classifying Video with Kernel Dynamic Textures , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Paul Honeine,et al.  Online Prediction of Time Series Data With Kernels , 2009, IEEE Transactions on Signal Processing.

[12]  Hui Ji,et al.  A Convergent Incoherent Dictionary Learning Algorithm for Sparse Coding , 2014, ECCV.

[13]  Jingang Jiang,et al.  Modeling and Analysis of High Speed Milling Ni-Based Superalloy GH3039 Surface Roughness Based on Response Surface Methodology , 2015 .

[14]  Pierre Vandergheynst,et al.  Dictionary Preconditioning for Greedy Algorithms , 2008, IEEE Transactions on Signal Processing.

[15]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Yong Xu,et al.  Scale-space texture description on SIFT-like textons , 2012, Comput. Vis. Image Underst..

[17]  Narendra Ahuja,et al.  Maximum Margin Distance Learning for Dynamic Texture Recognition , 2010, ECCV.

[18]  Narendra Ahuja,et al.  Phase Based Modelling of Dynamic Textures , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[19]  Hao Shen,et al.  An adaptive dictionary learning approach for modeling dynamical textures , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[20]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[21]  Narendra Ahuja,et al.  Sparse Coding of Linear Dynamical Systems with an Application to Dynamic Texture Recognition , 2010, 2010 20th International Conference on Pattern Recognition.

[22]  Liang-Tien Chia,et al.  Sparse Representation With Kernels , 2013, IEEE Transactions on Image Processing.

[23]  Brian C. Lovell,et al.  Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach , 2012, ECCV.

[24]  Martin Szummer,et al.  Temporal texture modeling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[25]  Yong Xu,et al.  Dynamic texture classification using dynamic fractal analysis , 2011, 2011 International Conference on Computer Vision.

[26]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[27]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[28]  Liang-Tien Chia,et al.  Kernel Sparse Representation for Image Classification and Face Recognition , 2010, ECCV.

[29]  Yong Xu,et al.  Classifying dynamic textures via spatiotemporal fractal analysis , 2015, Pattern Recognit..

[30]  Hongbin Zha,et al.  Incoherent dictionary learning for sparse representation , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[31]  Ting Wang,et al.  Kernel Sparse Representation-Based Classifier , 2012, IEEE Transactions on Signal Processing.

[32]  Zuowei Shen,et al.  L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  René Vidal,et al.  View-invariant dynamic texture recognition using a bag of dynamical systems , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[35]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Jie Chen,et al.  Online Dictionary Learning for Kernel LMS , 2014, IEEE Transactions on Signal Processing.

[37]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[38]  Rama Chellappa,et al.  Design of Non-Linear Kernel Dictionaries for Object Recognition , 2013, IEEE Transactions on Image Processing.

[39]  Yong Xu,et al.  Wavelet Domain Multifractal Analysis for Static and Dynamic Texture Classification , 2013, IEEE Transactions on Image Processing.

[40]  Narendra Ahuja,et al.  Dynamic textures: models and applications , 2010 .

[41]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[42]  Richard P. Wildes,et al.  Spacetime Texture Representation and Recognition Based on a Spatiotemporal Orientation Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Jin Wang,et al.  Incoherent dictionary learning for sparse representation based image denoising , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[44]  Richard P. Wildes,et al.  Dynamic texture recognition based on distributions of spacetime oriented structure , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Stefano Soatto,et al.  Spatially Homogeneous Dynamic Textures , 2004, ECCV.

[46]  Yan Huang,et al.  Dynamic Texture Recognition via Orthogonal Tensor Dictionary Learning , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[47]  Brian C. Lovell,et al.  Dictionary Learning and Sparse Coding on Grassmann Manifolds: An Extrinsic Solution , 2013, 2013 IEEE International Conference on Computer Vision.

[48]  Mark J. Huiskes,et al.  DynTex: A comprehensive database of dynamic textures , 2010, Pattern Recognit. Lett..