Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films

The prototypical photocatalyst TiO2 exists in different polymorphs, the most common forms are the anatase- and rutile-crystal structures. Generally, anatase is more active than rutile, but no consensus exists to explain this difference. Here we demonstrate that it is the bulk transport of excitons to the surface that contributes to the difference. Utilizing high –quality epitaxial TiO2 films of the two polymorphs we evaluate the photocatalytic activity as a function of TiO2-film thickness. For anatase the activity increases for films up to ~5 nm thick, while rutile films reach their maximum activity for ~2.5 nm films already. This shows that charge carriers excited deeper in the bulk contribute to surface reactions in anatase than in rutile. Furthermore, we measure surface orientation dependent activity on rutile single crystals. The pronounced orientation-dependent activity can also be correlated to anisotropic bulk charge carrier mobility, suggesting general importance of bulk charge diffusion for explaining photocatalytic anisotropies.

[1]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[2]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[3]  T. F. Heinz,et al.  Electron transport in TiO 2 probed by THz time-domain spectroscopy , 2004 .

[4]  H. Idriss,et al.  Structure sensitivity and photocatalytic reactions of semiconductors. Effect of the last layer atomic arrangement. , 2002, Journal of the American Chemical Society.

[5]  M. Batzill,et al.  Role of Surface Structure on the Charge Trapping in TiO2 Photocatalysts , 2010 .

[6]  M. Otani,et al.  Transport properties of d-electron-based transparent conducting oxide: Anatase Ti1−xNbxO2 , 2007 .

[7]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[8]  G. Rohrer,et al.  The origin of photochemical anisotropy in SrTiO3 , 2007 .

[9]  R. Scotti,et al.  Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes. , 2011, Journal of the American Chemical Society.

[10]  M. Batzill Fundamental aspects of surface engineering of transition metal oxide photocatalysts , 2011 .

[11]  M. Batzill,et al.  A two-dimensional phase of TiO₂ with a reduced bandgap. , 2011, Nature chemistry.

[12]  S. Chambers Epitaxial growth and properties of thin film oxides , 2000 .

[13]  H. Onishi,et al.  Topography of anatase TiO2 film synthesized on LaAlO3(001) , 2005 .

[14]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[15]  E. Altman,et al.  Surface structure of anatase TiO 2 (001): Reconstruction, atomic steps, and domains , 2001 .

[16]  T. Tachikawa,et al.  Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. , 2011, Journal of the American Chemical Society.

[17]  P. Fornasiero,et al.  Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. , 2012, Journal of the American Chemical Society.

[18]  J. N. Wilson,et al.  Effect of surface reconstruction of TiO2(001) single crystal on the photoreaction of acetic acid , 2003 .

[19]  Zhaoxiong Xie,et al.  Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.

[20]  W. Hofer,et al.  Geometric structure of TiO2(011)(2 x 1). , 2008, Physical review letters.

[21]  D. Norton,et al.  Epitaxial stabilization of single crystal anatase films via reactive sputter deposition , 2002 .

[22]  Hideomi Koinuma,et al.  Preparation of Atomically Smooth TiO2 Single Crystal Surfaces and Their Photochemical Property , 2005 .

[23]  G. Rohrer,et al.  ANISOTROPIC PHOTOCHEMICAL REACTIVITY OF BULK TIO2 CRYSTALS , 1998 .

[24]  N. Zheng,et al.  Nonaqueous production of nanostructured anatase with high-energy facets. , 2008, Journal of the American Chemical Society.

[25]  Lukas M. Thulin,et al.  Calculations of strain-modified anatase TiO 2 band structures , 2008 .

[26]  W. Chan,et al.  The degradation mechanism of methyl orange under photo-catalysis of TiO2. , 2012, Physical chemistry chemical physics : PCCP.

[27]  U. Diebold,et al.  Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101) , 2013, Science.

[28]  U. Diebold,et al.  Surface structure of TiO2(011)-(2x1). , 2004, Physical review letters.

[29]  E. Hendry,et al.  Electron transport in TiO2 probed by THz time-domain spectroscopy , 2004 .

[30]  Z. Šaponjić,et al.  The role of surface defect sites of titania nanoparticles in the photocatalysis: Aging and modification , 2013 .

[31]  Debabrata Pradhan,et al.  Synergy of low-energy {101} and high-energy {001} TiO₂ crystal facets for enhanced photocatalysis. , 2013, ACS nano.

[32]  Ping Liu,et al.  Effects of Interface Defects on Charge Transfer and Photoinduced Properties of TiO2 Bilayer Films , 2012 .

[33]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[34]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[35]  M. Muhler,et al.  Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. , 2011, Physical review letters.

[36]  Ulrike Diebold,et al.  Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase , 2001 .

[37]  L. Kavan,et al.  Orientation Dependence of Charge‐Transfer Processes on TiO2 (Anatase) Single Crystals , 2000 .

[38]  Michio Matsumura,et al.  Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases , 2001 .

[39]  S. Yamamoto,et al.  Preparation of epitaxial TiO2 films by pulsed laser deposition technique , 2001 .

[40]  H. Koinuma,et al.  Homo-epitaxial growth of rutile TiO2 film on step and terrace structured substrate , 2004 .

[41]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[42]  Yagi,et al.  Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2-x. , 1996, Physical review. B, Condensed matter.

[43]  Lianjun Liu,et al.  Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry , 2012 .

[44]  Z. Li,et al.  Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[45]  G. Rohrer,et al.  Orientation Dependence of Photochemical Reactions on TiO2 Surfaces , 1998 .

[46]  Y. Nakato,et al.  Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions. , 2005, Journal of the American Chemical Society.

[47]  E. Stefanakos,et al.  Photocatalytic degradation of methyl orange over single crystalline ZnO: orientation dependence of photoactivity and photostability of ZnO. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[48]  Xue-qing Gong,et al.  Adsorbate induced restructuring of TiO2(011)-(2×1) leads to one-dimensional nanocluster formation. , 2012, Physical Review Letters.

[49]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[50]  Xue-qing Gong,et al.  Anatase TiO2 crystals with exposed high-index facets. , 2011, Angewandte Chemie.

[51]  M. Lazzeri,et al.  Stress-driven reconstruction of an oxide surface: the anatase TiO(2)(001)-(1 x 4) surface. , 2001, Physical review letters.

[52]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[53]  Gao,et al.  Structure determination of the two-domain ( 1x4) anatase TiO2(001) surface , 2000, Physical review letters.

[54]  M. Cima,et al.  Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[55]  S. Stemmer,et al.  Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on r-plane Al2O3 , 2009 .

[56]  Claire M. Cobley,et al.  Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. , 2009, Nano letters.

[57]  Jian Pan,et al.  On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.

[58]  M. Matsumura,et al.  Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions , 2002 .

[59]  P. Stampe,et al.  The influence of lattice mismatch and film thickness on the growth of TiO2 on LaAlO3 and SrTiO3 substrates , 2003 .

[60]  Annabella Selloni,et al.  Stress-Driven Reconstruction of an Oxide Surface , 2001 .

[61]  Aron Walsh,et al.  Band alignment of rutile and anatase TiO 2 , 2013 .

[62]  S. Stemmer,et al.  Growth modes in metal-organic molecular beam epitaxy of TiO2 on r-plane sapphire , 2009 .