Feasibility Study for Future Space-Borne Coherent Doppler Wind Lidar, Part 1: Instrumental Overview for Global Wind Profile Observation
暂无分享,去创建一个
Riko Oki | Koji Yamashita | Satoshi Ochiai | Atsushi Sato | Kohei Mizutani | Shoken Ishii | Tomoaki Nishizawa | Takuji Kubota | Daisuke Sakaizawa | Philippe Baron | Toshiyuki Ishibashi | Toshiki Iwasaki | Masaki Satoh | Takashi Maki | Yohei Satoh | Motoaki Yasui | Kozo Okamoto | Tsuyoshi Thomas Sekiyama | K. Yamashita | T. Tanaka | K. Okamoto | S. Ochiai | T. Maki | P. Baron | Shoken Ishii | M. Aoki | K. Mizutani | M. Yasui | Yohei Satoh | T. Kubota | D. Sakaizawa | R. Oki | Toshiyuki Ishibashi | T. Sekiyama | T. Nishizawa | M. Satoh | T. Iwasaki | Taichu Y. Tanaka | Makoto Aoki | A. Sato | T. Ishibashi | S. Ishii | T. Tanaka
[1] A. Ångström. The parameters of atmospheric turbidity , 1964 .
[2] B. J. Rye. Antenna parameters for incoherent backscatter heterodyne lidar. , 1979, Applied optics.
[3] Dusan Zrnic,et al. Estimation of Spectral Moments for Weather Echoes , 1979, IEEE Transactions on Geoscience Electronics.
[4] T R Lawrence,et al. Feasibility studies for a global wind measuring satellite system (Windsat): analysis of simulated performance. , 1984, Applied optics.
[5] S W Henderson,et al. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. , 1986, Optics letters.
[6] R. Menzies,et al. Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit. , 1986, Applied optics.
[7] A. Rosenberg,et al. Carbon dioxide Doppler lidar wind sensor on a space station polar platform. , 1989, Applied optics.
[8] R. Frehlich,et al. Coherent laser radar performance for general atmospheric refractive turbulence. , 1991, Applied optics.
[9] S. Williams,et al. The GLObal Backscatter Experiment (GLOBE) Pacific Survey Mission , 1991, Coherent Laser Radar: Technology and Applications.
[10] B. J. Rye,et al. Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound , 1993, IEEE Trans. Geosci. Remote. Sens..
[11] Rod Frehlich,et al. Performance of Mean-Frequency Estimators for Doppler Radar and Lidar , 1994 .
[12] S. Henderson,et al. Coherent Doppler lidar measurements of winds in the weak signal regime. , 1997, Applied optics.
[13] Michael J. Kavaya,et al. Space Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission , 1998, Defense, Security, and Sensing.
[14] Norman P. Barnes,et al. The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF , 2000 .
[15] George David Emmitt. Hybrid technology Doppler wind lidar: assessment of simulated data products for a space-based system concept , 2001, SPIE Asia-Pacific Remote Sensing.
[16] J. Spinhirne,et al. Wavelength Dependence of Backscatter by use of Aerosol Microphysics and Lidar Data Sets: Application to 2.1- mum Wavelength for Space-Based and Airborne Lidars. , 2001, Applied optics.
[17] Rod Frehlich,et al. Velocity Error for Coherent Doppler Lidar with Pulse Accumulation , 2004 .
[18] R. Atlas,et al. Impact of Doppler lidar wind observations on a single-level meteorological analysis , 2002, SPIE Optics + Photonics.
[19] L. Isaksen,et al. THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT , 2005 .
[20] Melanie N. Ott,et al. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments , 2006 .
[21] Z. Pu,et al. LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System , 2014 .
[22] Ad Stoffelen,et al. Sensitivity Observing System Experiment (SOSE)-a new effective NWP-based tool in designing the global observing system , 2008 .
[23] Hisamichi Tanaka,et al. Development of an Onboard Doppler Lidar for Flight Safety , 2008 .
[24] C. Velden,et al. Identifying the Uncertainty in Determining Satellite-Derived Atmospheric Motion Vector Height Attribution , 2009 .
[25] M. Homma,et al. The Study of a Super Low Altitude Satellite , 2009 .
[26] Christian J. Grund,et al. Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms , 2009, Defense + Commercial Sensing.
[27] Atsushi Sato,et al. Coherent 2 microm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device. , 2010, Applied optics.
[28] Stephen J. Lord,et al. Observing system simulation experiments at the National Centers for Environmental Prediction , 2010 .
[29] Shumpei Kameyama,et al. 1.5-μm high-average power laser amplifier using a Er,Yb:glass planar waveguide for coherent Doppler lidar , 2012, Asia-Pacific Environmental Remote Sensing.
[30] Yasuhiro Murayama,et al. Performance and Technique of Coherent 2-μm Differential Absorption and Wind Lidar for Wind Measurement , 2013 .
[31] Satoshi Ochiai,et al. A design strategy for a high-energy Tm,Ho: YLF laser transmitter , 2014, Asia-Pacific Environmental Remote Sensing.
[32] Toshiyuki Ishibashi,et al. Observing system simulation experiments with multiple methods , 2014, Asia-Pacific Environmental Remote Sensing.
[33] T. Inagaki,et al. High Altitude Demonstration Flights on an Airborne Doppler LIDAR , 2014 .
[34] Martin Weissmann,et al. Height Correction of Atmospheric Motion Vectors Using Satellite Lidar Observations from CALIPSO , 2014 .
[35] Koji Yamashita,et al. Assimilation Experiments of MTSAT Rapid Scan Atmospheric Motion Vectors on a Heavy Rainfall Event , 2015 .
[36] Robert Atlas,et al. Observing System Simulation Experiments to Assess the Potential Impact of New Observing Systems on Hurricane Forecasting , 2015 .
[37] Robert Atlas,et al. Observing System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction , 2015 .
[38] Atsushi Sato,et al. Diode-pumped 2-μm pulse laser with noncomposite Tm,Ho:YLF rod conduction-cooled down to -80°C. , 2015, Applied optics.
[39] Riko Oki,et al. Measurement Performance Assessment of Future Space-Borne Doppler Wind Lidar for Numerical Weather Prediction , 2016 .
[40] Chikako Takahashi,et al. Feasibility Study for Future Spaceborne Coherent Doppler Wind Lidar, Part 2: Measurement Simulation Algorithms and Retrieval Error Characterization , 2017 .
[41] Satoshi Ochiai,et al. 7.28-W, High-Energy, Conductively Cooled, Q-Switched Tm,Ho:YLF Laser , 2017, IEEE Photonics Technology Letters.