Feasibility Study for Future Space-Borne Coherent Doppler Wind Lidar, Part 1: Instrumental Overview for Global Wind Profile Observation

[1]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[2]  B. J. Rye Antenna parameters for incoherent backscatter heterodyne lidar. , 1979, Applied optics.

[3]  Dusan Zrnic,et al.  Estimation of Spectral Moments for Weather Echoes , 1979, IEEE Transactions on Geoscience Electronics.

[4]  T R Lawrence,et al.  Feasibility studies for a global wind measuring satellite system (Windsat): analysis of simulated performance. , 1984, Applied optics.

[5]  S W Henderson,et al.  Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. , 1986, Optics letters.

[6]  R. Menzies,et al.  Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit. , 1986, Applied optics.

[7]  A. Rosenberg,et al.  Carbon dioxide Doppler lidar wind sensor on a space station polar platform. , 1989, Applied optics.

[8]  R. Frehlich,et al.  Coherent laser radar performance for general atmospheric refractive turbulence. , 1991, Applied optics.

[9]  S. Williams,et al.  The GLObal Backscatter Experiment (GLOBE) Pacific Survey Mission , 1991, Coherent Laser Radar: Technology and Applications.

[10]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound , 1993, IEEE Trans. Geosci. Remote. Sens..

[11]  Rod Frehlich,et al.  Performance of Mean-Frequency Estimators for Doppler Radar and Lidar , 1994 .

[12]  S. Henderson,et al.  Coherent Doppler lidar measurements of winds in the weak signal regime. , 1997, Applied optics.

[13]  Michael J. Kavaya,et al.  Space Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission , 1998, Defense, Security, and Sensing.

[14]  Norman P. Barnes,et al.  The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF , 2000 .

[15]  George David Emmitt Hybrid technology Doppler wind lidar: assessment of simulated data products for a space-based system concept , 2001, SPIE Asia-Pacific Remote Sensing.

[16]  J. Spinhirne,et al.  Wavelength Dependence of Backscatter by use of Aerosol Microphysics and Lidar Data Sets: Application to 2.1- mum Wavelength for Space-Based and Airborne Lidars. , 2001, Applied optics.

[17]  Rod Frehlich,et al.  Velocity Error for Coherent Doppler Lidar with Pulse Accumulation , 2004 .

[18]  R. Atlas,et al.  Impact of Doppler lidar wind observations on a single-level meteorological analysis , 2002, SPIE Optics + Photonics.

[19]  L. Isaksen,et al.  THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT , 2005 .

[20]  Melanie N. Ott,et al.  High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments , 2006 .

[21]  Z. Pu,et al.  LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System , 2014 .

[22]  Ad Stoffelen,et al.  Sensitivity Observing System Experiment (SOSE)-a new effective NWP-based tool in designing the global observing system , 2008 .

[23]  Hisamichi Tanaka,et al.  Development of an Onboard Doppler Lidar for Flight Safety , 2008 .

[24]  C. Velden,et al.  Identifying the Uncertainty in Determining Satellite-Derived Atmospheric Motion Vector Height Attribution , 2009 .

[25]  M. Homma,et al.  The Study of a Super Low Altitude Satellite , 2009 .

[26]  Christian J. Grund,et al.  Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms , 2009, Defense + Commercial Sensing.

[27]  Atsushi Sato,et al.  Coherent 2 microm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device. , 2010, Applied optics.

[28]  Stephen J. Lord,et al.  Observing system simulation experiments at the National Centers for Environmental Prediction , 2010 .

[29]  Shumpei Kameyama,et al.  1.5-μm high-average power laser amplifier using a Er,Yb:glass planar waveguide for coherent Doppler lidar , 2012, Asia-Pacific Environmental Remote Sensing.

[30]  Yasuhiro Murayama,et al.  Performance and Technique of Coherent 2-μm Differential Absorption and Wind Lidar for Wind Measurement , 2013 .

[31]  Satoshi Ochiai,et al.  A design strategy for a high-energy Tm,Ho: YLF laser transmitter , 2014, Asia-Pacific Environmental Remote Sensing.

[32]  Toshiyuki Ishibashi,et al.  Observing system simulation experiments with multiple methods , 2014, Asia-Pacific Environmental Remote Sensing.

[33]  T. Inagaki,et al.  High Altitude Demonstration Flights on an Airborne Doppler LIDAR , 2014 .

[34]  Martin Weissmann,et al.  Height Correction of Atmospheric Motion Vectors Using Satellite Lidar Observations from CALIPSO , 2014 .

[35]  Koji Yamashita,et al.  Assimilation Experiments of MTSAT Rapid Scan Atmospheric Motion Vectors on a Heavy Rainfall Event , 2015 .

[36]  Robert Atlas,et al.  Observing System Simulation Experiments to Assess the Potential Impact of New Observing Systems on Hurricane Forecasting , 2015 .

[37]  Robert Atlas,et al.  Observing System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction , 2015 .

[38]  Atsushi Sato,et al.  Diode-pumped 2-μm pulse laser with noncomposite Tm,Ho:YLF rod conduction-cooled down to -80°C. , 2015, Applied optics.

[39]  Riko Oki,et al.  Measurement Performance Assessment of Future Space-Borne Doppler Wind Lidar for Numerical Weather Prediction , 2016 .

[40]  Chikako Takahashi,et al.  Feasibility Study for Future Spaceborne Coherent Doppler Wind Lidar, Part 2: Measurement Simulation Algorithms and Retrieval Error Characterization , 2017 .

[41]  Satoshi Ochiai,et al.  7.28-W, High-Energy, Conductively Cooled, Q-Switched Tm,Ho:YLF Laser , 2017, IEEE Photonics Technology Letters.